
CSD L-T-1111

DISCRETE AND CONTINUOUS
DYNAMICS MODELING OF A

MASS MOVING ON A FLEXIBLE STRUCTURE

by

Deborah Ann Herman

January 1992

._ .... t :rk)I "i L "-j :':=I:i!l<; _, if :_:_r (C;1-_rl : s

L _i',._ : __ ", C_CL _,-:_'

_3/3')

DRAPER
The Charles Stark Draper Laboratory, Inc.

555 Technology Square, Cambridge, Massachusetts 02139-3563





DISCRETE AND CONTINUOUS DYNAMICS MODELING

OF A MASS MOVING ON A FLEXIBLE STRUCTURE

by

DEBORAH ANN HERMAN

Submitted to the

Department of Aeronautics and Astronautics

on January 17, 1992

in partial fulfiUment of the requirements for the degree of

Master of Science

in

Aeronautics and Astronautics

ABSTRACT

The purpose of this thesis is to develop a general discrete methodology for modeling the

dynamics of a mass that moves on the surface of a flexible structure. This problem was motivated

by the Space Station/Mobile Transporter system. A model reduction approach is developed to

make the methodology applicable to large structural systems• To validate the discrete

methodology, continuous formulations are also developed. Three different systems are examined:

(1) Simply-Supported Beam, (2) Free-Free Beam, and (3) Free-Free beam with two points of

contact between the mass and the flexible beam. In addition to validating the methodology,

parametric studies were performed to examine how the system's physical properties affect its

dynamics. Selected MATLAB programs are provided.
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CHAPTER 1

INTRODUCTION

The concept of "Freedom" Space Station divulges a wide range of dynamics problems.

The particular problem considered in this thesis will help examine how the mobile transporter

motion affects the space station dynamics. In the current space station layout, the mobile

transporter is connected to the main truss of the space station (see Figure 1). The mobile

transporter moves along the length of the truss on a track carrying payload about the station. Since

the sum of the mass of the mobile transporter and that of the payload it will carry is potentially

comparable to the mass of the entire station, the inertial effects of the transporter should not be

ignored.

The current analysis is motivated by the Space Station-Mobile Transporter (SS-MT)

system. A simplified model of a mass moving over a flexible guideway is used to resemble the

more complicated SS-MT system. This simplified system may be solved with a continuous

formulation, but obtaining a continuous formulation that will simulate the complicated system

containing the station, transporter, and shuttle is not feasible. Therefore, while a continuous

analysis provides insight, a more general discrete formulation is needed to address the large-scale

problem at hand. The objective is to develop a discrete algorithm that can be tested against a

continuous formulation for the Flexible Guideway/Moving Mass system. Once the validity of this

discrete algorithm is proven, it may be extended to simulate the motion of the Space Station-Mobile

Transporter system.

In both the continuous and the discrete analyses, the guideway is modeled as a flexible

beam. The moving mass is considered to be a rigid body that moves along the beam's length. The

inertial effects due to the motion of the mass are included in the derivation. For the discrete

system, the flexible beam is divided into finite beam-elements. Using lumped-parameter and

energy-consistent methods, respectively, the beam's mass and stiffness matrices are obtained.

Then, an invertible operator is used to map the continuous spatial representation of the moving

mass onto the discrete representation of the flexible structure.

A continuous and discrete formulation is used to examine the mass connected to the flexible

guideway at only one point. This model does not correspond to the actual Space Station-Mobile

Transporter system but it serves as an appropriate test article. A continuous formulation is

developed to check the results of the discrete formulation, and numerical results are presented for a

simply-supported and a free-free flexible beam. Once the validity of the discrete methodology is
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Figure 1. Space Station Assembly.
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established, parametric studies are performed for both the simply-supported and the free-free

beam.

The final step in the analysis is to connect the moving mass to the flexible beam at two

points. This model was chosen to represent the train/track aspect of the SS-MT system. Since a

discrete methodology was validated, a continuous formulation of this new system is not necessary.

To stay close to the SS-MT system, only the free-free beam case is examined here. Studies that

examine how the spacing of the two contact points affects the dynamics of the entire system are

presented.

There are four chapters and four Appendices following this introduction. Chapter 2

examines the relevant work that has been accomplished in this area. Most previous work

concentrate on the motion of a truck travelling over a flexible bridge or on a train travelling over a

track. The SS-MT dynamics are similar to the flexible bridge problem except for the rigid body

motion that the inertially-free space station undergoes. Due to the increase in computer power in

recent years, many dynamic simulation programs were developed. Chapter 2 examines how well

these existing dynamic codes can handle the specific problem at hand.

Chapter 3 describes the theoretical analysis: Section 3.1 focuses on the continuous

formulation and Section 3.2 develops the discrete formulation. The simply-supported and the free-

free beam are examined here as special cases. Section 3.3 discusses the discrete, inertially free,

multipoint-of-contact system. Each of the three sections in Chapter 3 starts with a mathematical

model of the system. Then the equation of motion is developed using a Newtonian method. The

equations are made nondimensional and placed into a reduced set of modal coordinates. The final

equations are then cast in state-space form, which is well suited for numerical computation.

Chapter 4 displays the numerical results and is divided into two sections. The first section,

Section 4.1, outlines how the simulations are organized and discusses the goals that the results are

trying to obtain and the parameters used to develop the simulations. The second section, Section

4.2, displays and discusses each simulation that is run. In this section, the simply-supported beam

is examined first to compare the accuracy of the discrete and continuous formulation. Parametric

studies are then performed in order to examine how a change in the system nondimensional

parameters changes the system dynamics. Next, the free-free case is examined. Once again, the

discrete and continuous formulations are compared to assess the accuracy of the discrete

formulation. Parametric studies are again performed when the accuracy of the discrete case has

been proved. Finally the two-point-of-contact case is displayed.
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Chapter 5 offers conclusions and suggestions for further work; in particular, extending the

discrete formulation presented here to model the Space Station-Mobile Transporter system. The

concept of connecting the shuttle to the SS-MT system could also be considered, which would be a

logical extension of the work presented in this thesis.

Appendix A offers a Lagrangian formulation of the continuous free-free beam, which is

used to check the continuous formulation of the same system derived earlier using Newton's

equation of motion. Appendix B describes the numerical integration process that was used to

obtain the simulation results shown in Chapter 4. The Runge Kutta integration scheme is

described. Appendix C provides numerical values of the matrices used in evaluating the free-free

beam and expands the spatial derivatives of the shape functions used in the discrete formulations.

Appendix D describes the MATLAB programs that were written to simulate the Flexible

Guideway/Moving Mass system. Some selected MATLAB programs are displayed.

4



CHAPTER 2

PREVIOUS WORKS

Reaching as far back as the early nineteenth century, scientists and theorists have been

intrigued by the dynamic interaction that occurs when a load travels over a flexible structure. In the

past, common models of this interactive system have been that of a truck travelling over a bridge, a

train travelling along a track, or a package moving on a conveyer belt. These systems are similar to

the inertially free Flexible Structure/Moving Mass system that is used here to resemble the Space

Station-Mobile Transporter (SS-MT) system.

Unlike the other systems mentioned, the Space Station-Mobile Transporter system is

inertially free, and it is geometrically complex. It is necessary to obtain a discrete representation of

the Flexible Structure/Moving Mass system that can be extended to the Space Station-Mobile

Transporter system. A discrete representation is necessary in order to accommodate mass and

stiffness matrices, rather than partial differential equations. References [1] and [2] were the first to

address this important concept in a general way. This thesis is a detailed compilation of the

analysis presented in those two papers, with the exception that Ref. [2] addresses the problem of a

flexible structure moving on a flexible structure.

This chapter introduces other work involving the dynamic interaction of the moving

mass/flexible structure issue. Section 2.1 discusses some related previously released papers.

Section 2.2 examines some existing multibody dynamics and finite-element codes in order to

assess their ability to handle the proposed problem.

2.1 PREVIOUSLY PUBLISHED PAPERS

Three important features are needed to handle the Space Station-Mobile Transporter system

and the dynamics of the Space Shuttle:

(1) A discrete representation.

(2) The ability to handle very large complex systems.

(3) Computational efficiency.

The previously published papers are generally not well suited to meet all three of these

requirements. Most of the previous work assumes that a continuous model of the flexible structure

is available (Refs. [3]-[7]). References [3]-[6] assume that the beam is simply-supported. For

example, Galerkin's method (Ref. [3]), Inverse Laplace transform (Ref. [5]), and Fourier series

5



(Ref. [6]) are several of the analytical techniques discussed. The derived discrete methodology

outlined in Section 3.2 uses the continuous solution presented in Ref. [5] for its comparison.

Reference [7] presents a continuous formulation that may be applied to different boundary

conditions. This continuous solution, however, is primarily beneficial when the inertial effects of

the moving mass can be ignored, thus treating the travelling load as a moving force rather than as a

moving mass. The repercussions of this assumption axe disclosed in Chapter 4.

Two papers (Refs. [8] and [9]) present discrete methodologies capable of solving the

moving mass/flexible structure problem. Reference [8] presents a methodology that is applicable

for time-varying forces. Reference [9] presents a formulation that may be implemented into a

general finite-element code, such as MSC NASTRAN. This method is valid for any boundary

condition. Lagrange multipliers are used to obtain a linear time-invariant formulation, which can

then be solved using NASTRAN. However, as explained in Ref. [2], this formulation is generally

applicable when modal reduction is not necessary.

The papers discussed above (Refs. [3]-[9]) present methodologies that are well suited to

study the motion of a heavy truck or train travelling over a flexible bridge. However, the

methodology presented here is well suited for the complex inertially free Space Station-Mobile

Transporter system. It is a discrete representation that is independent on the boundary conditions

of the beam. It is well suited for model reduction so can be altered to include the Space Shuttle's

dynamics.

2.2 EXISTING CODES

In the past twenty years, the availability and power of computers has grown exponentially.

Coinciding with the boom in computer hardware was an increase in computer software capabilities.

Today there are hundreds of software packages available to handle very diverse tasks.

Among the codes that handle multibody dynamic interactions are: DISCOS (Ref. [101),

ADAMS (Ref. [11]), and DADS (Ref. [12]). These codes model the connection between two

bodies as either a prismatic or a rotational joint. As was stated in Ref. [1], however, the motion of

the Mobile Transporter is dependent on the flexible-body motion of the Space Station. Therefore,

the SS-MT system cannot be modeled using these joints, without making far-reaching

assumptions.

6



An alternative is to develop a formulation that could be implemented using an existing

finite-element code, such as MSC NASTRAN (Ref. [13]) or ADINA (Ref. [14]). NASTRAN

requires that the equations be cast in a time-invariant form. Ref. [9] presents an effective approach

to using NASTRAN for the moving mass problem in the case of low-order structures. ADINA's

strength lies in other areas.

The discrete formulation presented in Section 3.2 is developed specifically with the

application to large structural systems in mind.
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CHAPTER 3

THEORETICAL ANALYSIS

Chapter 3 discusses the theoretical analysis: Section 3.1 presents the continuous

formulation, Section 3.2 presents the discrete formulation with one point of contact, and Section

3.3 presents a discrete formulation for the multipoint-of-contact system.

Each section is set up in a similar manner. First, a mathematical model of the system is

discussed. Using this model, equations of motion of the entire system are developed and placed

into a nondimensional form in terms of the beam's modal coordinates. Then a state space matrix

representation is formed so the formulation is suitable for numerical evaluation.

A general formulation valid for any boundary condition is presented in each section. Two

systems axe examined in detail: (1) the simply-supported beam and (2) the free-free beam.

3.1 CONTINUOUS FORMULATION

In the following sections, the continuous formulation of the SS-MT system is developed.

The results from this formulation are compared to those obtained by the discrete analysis presented

in Section 3.2.

Two different systems are examined here. The first system system model, shown in

Figure 2, represents the inertially fixed space station with the transporter travelling along its

length. This model represents many physical entities, the most popular example being a heavy

truck travelling over a flexible bridge. The second system, shown in Figure 3, represents the

inertiallyfree space station with the transporter travelling along its length.

Y
Xm

V m

v

X

Figure 2. Simply supported beam with a mass moving along its length.
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Y

V m

u(x,t)
u m (xm(x,t),O

V

X

Figure 3. Free free beam with a mass moving along its length.

The dynamics analysis presented is a general methodology applicable to both systems. In

Sections 3.1.5 and 3.1.6, the equations are made specific to the inertially fixed and the inertially

free systems, respectively.

3.1.1 Mathematical Model

There are several ways to formulate the equations of motion for the systems depicted in

Figures 2 and 3. For an inertially fixed system, an exact continuous solution using an inverse

Laplace transform may be used (Ref. [5]). For a more general system, an exact continuous

solution is not available.

In this analysis, however, an assumed modes approach, which accurately gives the

deformation while retaining only three modes, is used to solve the systems shown in the above

figures. The assumed modes approach uses Galerkin's method to determine the beam deformation

due to the motion of the mass. Galerkin's method assumes that the beam deflection can be

approximated by a superposition of orthogonal mode shapes. The assumption is that, using

orthogonal modes, the error of the approximation is vanishes as the number of modes retained is

increased.

The inertial effects of the moving mass are included in this analysis. If these effects are

ignored, the mobile transporter is modeled as a moving force rather than as a moving mass. If the

mass of the moving object is considered negligible compared to that of the flexible structure, the

inertial effects can be ignored; however, if the mass of the object is comparable in size to the

structure, these inertial effects should not be ignored.

10



Several cases of the two approaches for different moving object/flexible structure mass

ratios were studied. The results are presented in Chapter 4. In the continuous and the discrete

formulations, the flexible structure is modeled as a Bernouille-Euler beam.

3.1.2 Equations of Motion

steps:

The equations of motion for the flexible beam-moving mass system are derived in three

(1)

(2)

(3)

The partial differential equation describing the motion of the flexible structure is

determined.

The moving mass equation is obtained.

A compatibility condition is invoked to obtain the equation of motion for the entire

system. The compatibility condition is a direct consequence of Newton's third law.

It states that for every force there is a reactive force equal in magnitude but opposite in

direction. Thus, the force on the beam due to the moving mass is equal to the force

created by the acceleration of the mass but opposite in direction.

Flexible Structure Equation

The fourth-order partial differential equation describing the motion for a Bemoulli-Euler

beam is (Ref. [15]):

p ii(x,t) + E1 o4u (x,t) = Fext (x,t)
x 4 (3.1)

The displacement field, u(x,t), describes the motion of the mean chord of the deformed beam with

respect to an inertial reference frame. This field contains any rigid body translation and rotation as

well as flexible motion of the beam. Since the structure is modeled as a Bemouille-Euler beam, the

mean chord of the beam is assumed to undergo pure translation as a result of the deformation. Fext

is the vector sum of the external forces applied to the beam. The material properties of the beam

are considered to be homogeneous.

11



Moving Mass Equation

The equation describing the motion of the moving mass is considered. This equation is

derived using Newton's second law of mechanics, which states that the force exerted on the mass

is proportional to the absolute acceleration of the mass.

[02Urn (xm {x,t},t)

mm [' 0 12 )abs = Fm (xm (x,ej,t)
(3.2)

where Fm(xm(x,O,t) is the force exerted on the moving mass.

The absolute acceleration of the beam is the acceleration of the moving mass displacement

field, Um(Xm(X,O,O, with respect to an inertial reference frame. When differentiating the moving

mass's displacement field, it is important to imagine a reference frame embedded in the moving

mass. Since the mass is moving, the reference frame is also moving with respect to the inertial

frame and adds its own terms to the acceleration of the mass. In this analysis, the mass is moving

at a constant velocity Vm. Therefore, the absolute acceleration of the moving mass is

02 urn ) = iim + 2 Vm 02 Um

Ot 2 ]abs Of OX m

0 2 Um

0X2m (3.3)

where the functional dependence of the variables are omitted for brevity.

As it stands, Eq. (3.3) is written as a function of the moving mass displacement field, Um.

To easily formulate the system equation, it would be helpful to express this equation in terms of the

beam's displacement u. Since the mass is fixed to the beam, it cannot slip and, at any time, the

beam and the moving mass have the same displacement in terms of Fm. This relationship can be

expressed mathematically by using the dirac delta function, which is a continuous function that

depicts the value of a function at discrete times. Using this, the displacement of the mass is

rewritten as a function of the displacement of the beam:

Um= Um _x - Xm) (3.4)

Since the dirac delta function is not a function of time, the spatial derivatives in Eq. (3.3)

are rewritten as

12



_2um- _2u _(x- xm)
0x 2 0x 2 (3.5)

_2U m O2U

O'-_m_t-Ox -_t t_x- Xm) (3.6)

Equations (3.5) and (3.6) are substituted into the absolute acceleration expression for the moving

mass. The force equation for the moving mass then can be written in a form more compatible to

the flexible beam equation:

_2 u _2 u_ 8(x- Xr,)=Fmmm //+ 2 vm_--_+ v2mO-_!
(3.7)

Compatibility Equation

Newton's third law of dynamics states that for every force there is a reactive force equal in

magnitude but opposite in direction. Using this law, the compatibility equation between the

moving mass and the flexible beam is determined. The force exerted on the beam due to the

moving mass is equal in magnitude but opposite in direction to the force defined by Eq. (3.7). The

total force exerted on the beam is the sum of the force due to the moving mass plus any other

external forces acting on the beam:

Fext = fext- Fm (3.8)

wherefext is any arbitrary external force. The external force applied to the beam varies depending

on which environment is being simulated. The actual value offext for the two systems studied is

shown in Sections 3.1.5 and 3.1.6. Using Eq. (3.7) the total force applied to the beam is

32 uFext = f ext - mm ii + 2 Vm Ot Ox
_2 u] a(x- xm)

+ (3.9)

System Equation

The equation of motion for the entire system is obtained by using the force expression

found in Eq. (3.9) and substituting it into the beam equation (Eq. (3.1)). For clarity, any terms

13



involving the displacementof the beamareshownon the left-hand sideof theequationeven

thoughtheyappeardueto theforceexertedby themovingmass.A fourth-orderpartialdifferential

equationdescribingthetotaldisplacementof thebeamasamassmovesataconstantvelocityalong

its lengthis

0 2 u 0 2 u 1
p Ft + El O4U + mrn ii + 2 Vm + v2m _(X - Xm) = f ext

(3.10)

The displacement field can contain translations and rotations. The boundary condition of

the beam does not change the form of this general equation.

Modal Solution

Equation 3.10 must be rewritten into a form more suitable for numerical computation. For

certain systems, this equation can be solved directly using an inverse Laplace transform. A more

general approach is described here. A linear superposition of orthogonal modes is used to

represent the beam's vibration. The new modal representation contains a mode shape, #i, which

is only dependent on space, and a modal coordinate, r/i, which is only a function of time.

N

u(x,t) = L _, _Pi(x) rli(t)
i= 1 (3.11)

where N is the number of modes. As the number of modes approaches infinity, the modal

approximation approaches the exact displacement of the beam u(x,t). The actual modes used

depend on the system being analyzed. The mode shapes used for the simply-supported and free-

free beam systems are shown in Sections 3.1.5 and 3.1.6, respectively.

It is not feasible to use an infinite amount of modes to model the displacement. Different

variations of the assumed modes approach that drive the error of the approximation to zero for a

small amount of modes.have been developed. One of these methods is known as Galerkin's

method, which uses the orthogonal property of the modes to drive the error to zero.

Equation (3.11) is used to substitute the modal coordinate rli(t) for the natural coordinate

u(x,t); this substitution is used in Eq. (3.10). This new equation can be integrated since the mode

shapes Oi are not a function of time. Before the integration takes place, the new equation is

14



premultiplied by the transpose of the mode shapes _bj(t). Since the modes are orthogonal, this step

reduces the error of the approximation. The resulting integral equation is

_ el rli+p_ii_i ax+
i=1

N( ' "mm_)j _._ (_i_i + 2 Vm (_i _i+Vm d_i Tli x,.mfTlext_

i=l

j= 1,2,...N

(3.12)

where

(3.13)

The roman numeral superscript indicates a spatial derivative of the appropriate order. A special

relationship involving the dirac delta function was used in obtaining the above equation

f f(x)_(X- Xm)dx=f(xm)
(3.14)

Nondimensional Integrals

The mode shapes are only a function of space; therefore, the integral in Eq. (3.12) can be

determined either analytically or numerically. To condense the equation into a more readable form,

two nondimensional integrals are defined (Eqs. (3.15), (3.16)). The values of I1 and 12 for the

simply-supported beam are found in Section 3.1.5. The values of the free-free beam are listed in

Appendix C.

(3.15)

f12 (ij)= L 3 OiIV ¢)j dx

(3.16)
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Equation (3.12) is rewritten using the definitions in Eqs. (3.15) and (3.16).

N

z1
N I it

_i _i + 2 Vra _i _i 4"Vm *i _i_ x. = fllexti

i=I

j=I,2,...N

(3.17)

This equation represents n first-order differential equations describing the total modal displacement

of the system. Next, Eq. (3.17) must be put into a nondimensional form.

3.1.3 Nondimensional Equations of Motion

A general procedure for placing the equations of motion into a nondimensional form is

presented. First, the reference parameters for each variable in the equation must be defined. Then,

each variable is divided by the appropriate reference parameter. The reference parameters for the

mass, time, and length variables are:

Mass --_ pL (3.18)

Time _ L__L__
Vm (3.19)

Displacement _ L (3.20)

The mass terms are made nondimensional by the beam's mass. The time reference parameter is the

time required for the moving mass to travel the beam's length. The beam's length is used as the

reference parameter for displacement.

For clarity, nondimensional parameters are defined below and appear after the terms are

divided by their respective reference parameters.

t0iL
I'_ = a_t,. =

v,n (3.21)

_m -- mra

pL (3.22)
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;L _ eta__ e/
PL4 P V2mL2 (3.23)

Z = l _ t V m

L (3.24)

P L2 P v2 (3.25)

?

where tr = _mmis the reference time defined above. The parameters represent the frequency, mass,

stiffness, time, and external force of the system, respectively. In the following equations, an

over-script o is used to represent a derivative with respect to the nondimensional time parameter x,

i.e.,

_ L
_) - _ - trot - Vrn_t

(3.26)

Using the nondimensional procedure outlined previously, Eq. (3.17) is made

nondimensional:

+

N

Z (,, oo(id) 11 i + Z I2 (id) 11i) +
i=1

 (oo omm _)j Z _)i 11i+2 _i lli + 11i x,. =11fj

i=1

j=1,2 .... N

(3.27)

Equation (3.25) describes the displacement of the modal coordinate due to the motion of a moving

mass and an externally applied force. Next, this equation must be rewritten in a form suitable for

numerical simulation.

3.1.4 State Space Representation

The system depicted in Eq. (3.27) is described using a state-determined mathematical

model. In this type of model, the system is described by a set of ordinary differential equations in

terms of state variables (Ref. [16]). The future of all the variables associated with the system is

17



predicted from the previous time history of the state variables. The only information needed about

the system is the initial condition of the state variables and the equations defining the future time

history of these variables.

To obtain a state space representation, an nth-order differential equation must be

transformed into n fin'st-order differential equations. Equation (3.27) is already in the required

form. Next, an arbitrary set of state variables are chosen. For this model, the modal

displacements and their associated velocities are chosen as the state variables: the displacements are

chosen since they are the desired output, and the velocities are chosen so the matrices take on a

familiar form. The two sets of state variables are combined into one state vector

o o }TX = 01""ONOI""_N (3.28)

In a state-determined formulation, the time derivative of the state vector is a function of the

state variables

O

x = F(x) (3.29)

Equations (3.28) and (3.29) show that the acceleration at any point can be expressed as a function

of the velocity and displacement at that point. Once the accelerations are known, the velocities and

displacements are obtained by numerically integrating the system equation of motion forward in

time.

Matrix Representation

For easy evaluation, Eq. (3.27) is placed into a matrix representation describing the states

of the system. The equation is first rewritten so that it follows the standard matrix equation

describing a dynamical system

OO O

M _7 +C rl+ K rl= F (3.30)

where M, C, K, and F represent the mass, damping, stiffness, and force matrices, respectively. 77

is the vector containing the modal displacements

r/= [r/1...r/N] (3.31)
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Thedefinition of thestatevectoris usedto placeEq. (3.30)into theform of Eq. (3.29). Thefinal

result is anequationthat canbe integratedto obtain the modal displacementsand the modal
velocities:

°I° ]X= X+ 0

_ M-1K _ MdC MdF (3.32)

where E is the identity matrix.

Additional terms representing structural damping are added to the damping matrix. It is

easier to represent structural damping in modal coordinates rather than natural coordinates;

therefore, the additional terms are already in modal form. Any off-diagonal modal terms are

assumed to be negligible so the only extra terms appear on the diagonal. From Ref. [15], modal

damping takes the form

[Co]i,i = 2 _ _]_ 11 (i,i) 12 (i,i) (3.33)

where 12i is the nondimensional frequency of the beam. The beam's frequency depends on its

boundary condition. The natural frequencies for the two systems examined are shown in Sections

3.1.5 and 3.1.6.

The mass, stiffness, and damping matrices all contain a constant and a time-varying

component. The form of the force matrix depends on the type of external force applied to the

system. The constant matrix is diagonal and represents the dynamics of the flexible beam without

any moving mass. The time-varying matrix is fully populated and comes directly from the inertial

effects of the moving mass. The combination of both matrices forms the total mass, stiffness, and

damping matrices that are fully populated and time-varying. The constant matrices have the

subscript o and the time-varying matrices have the subscript var. The total matrices are the sum of

the two:

M = Mo + Mvar (3.34)

C = Co + Cvar (3.35)
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K = Ko + Kvar (3.36)

First, the constant mass and stiffness matrices are determined. The constant modal

damping matrix was defined by Eq. (3.33). Even though the actual values of the integrals have not

been shown, the mode shapes used are orthogonal, ensuring the corresponding matrices will be

diagonal.

[Mo]i, i = ll(i,i) (3.37)

[Ko]i,i : Al2(i,i) (3.38)

Next, the time-varying matrices are shown. Note that in the following matrices the mode

shapes and their derivatives are evaluated at the position of the moving mass, Xm. Since Xm

depends on time, the values of the matrices also vary with time.

CMvarli_-- Jim _i _j (3.39)

P

(3.40)

[Kvar]ij =Pm dpi'dpj (3.41)

As stated previously, the vector containing the external forces may or may not be time

varying, depending on the actual value of the external force applied. In symbolic terms, the force

vector is

(3.42)

The matrices shown in the Eqs. (3.37), (3.38), (3.39), (3.40), (3.41), and (3.42) are used

in Eq. (3.32). The resulting expression is then numerically integrated to obtain the modal

displacements and velocities at every point in time. Using Eq. (3.11) the modal displacements are

transformed into the desired natural displacements.
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To reiterate,theanalysispresentedsofar hasbeenfor thegeneralflexible beam/moving

masssystem.Two systemsareexaminedin detail usingnumericalmethods: the inertially fixed

system,which is modeledusinga simply supportedbeam,andinertially free system,which is
modeledusingafree-freebeam.Bothsystemsareexplainedin greaterdetail in Sections3.1.5and

3.1.6,respectively.

3.1.5 Applications to a Simply-Supported Beam

The simply supported system shown in Figure 2 represents many different physical

systems. The most common physical system associated with this model is a truck traveling over a

flexible bridge. The simply-supported beam model is used in this analysis to check the discrete

methodology. One advantage of using this model is the availability of previously published

results. Another advantage of simulating this system is the simplicity of the mode shapes. The

nondimensional integrals can be calculated by hand; therefore, the numerical code used to simulate

the system is easily checked when the simply-supported modes are used.

The modes of a simply-supported beam are (Ref. [17])

¢_i(x) = sin i__g__X_
L (3.43)

These modes are orthogonal but not orthonormal. The corresponding nondimensional frequencies

of the beam are

£2/ = o_-L--L-= (inr)2}t-_
Vm (3.44)

which are used in Eq. (3.33) to determine the constant component of the nondimensional damping

matrix.

Once the mode shapes are known, the values of the nondimensional frequencies are

determined. For the mode shapes shown in Eq. (3.43), the integrals are determined analytically:

ll{i,i)= 1
2 (3.45)

12 (i,i)= (i _)4
2 (3.46)
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Themodeshapesshownin Eq. (3.43)arealsousedto developthematricesgivenby Eqs.

(3.33)-(3.41). Sincethe mode shapesfor this systemaresimplesine waves,the matricescan

easilybeput into their symbolicform:

M

1-+

2
Prn sin lrv sin Jrv

sym

btrn sin zrt sin N_rv

1+

2
sin Nmtsin Nz_ (3.47)

C =21r

2
+l_rnsin_t cosg_

I_rn sinNlrv coslrz

l_mNsinp* cosNTr*

( N2_ )_-
2

+ktmNsin Nzc_ cos NJr__ (3.48)

g

1_ z "
2

_r2 sinzt, sin_r,

-lr2sin Nlr'r sin _'c

-N 2zc2sin _,sinN _,

2

N2_r2sinNzc¢sinN_¢ _ (3.49)

It is easy to see the constant and time-varying components of these matrices. It is also

apparent that only the total mass matrix and the constant components of the damping and stiffness

man'ices are symmetric. For more complex systems it is harder to write these matrices in their

symbolic form.
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to thebeamis thegravitationalforceof themovingmass,fext= -mmg _x - Xm). Since the mass

is moving, this force varies with time. Using Eqs. (3.13) and (3.14), the force vector used for this

simulation is

(3.50)

where Itg is a nondimensional parameter for the gravitational force applied to the beam:

it s = mm g tr2 = mm g
pL 2 pv 2 (3.51)

The results of this simulation are presented in Chapter 4.

3.1.6 Applications to a Free-Free Beam

The free-free system, shown in Figure 3, may represent a crude model of the space station-

mobile transporter system as it orbits around earth. The transporter is connected to the space

station at one point. Therefore, this model depicts the transporter as a wheel travelling over the

truss, rather than as a train travelling on a track. The train/track aspect of the mobile transporter is

examined in Section 3.3.

The model used to describe the inertially free system is a free-free flexible beam with the

rigid transporter travelling along its length. The modes of a free-free beam are (Ref. [17])

¢1=1

=_- 1/2 (3.52)

¢i = cos fli x + cosh fli -x - ai (sin fli -2 + sinh fli "x) 3<i<N

where

_=x
L (3.53)
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_=X
L (3.53)

The f'u'st mode corresponds to rigid body translation. The second mode corresponds to

rigid body rotation. The next N+2 modes are the flexible modes of the free-free beam. All the

mode shapes are nondimensional, orthogonal, and orthonormal. The values for fli and tri for the

first three flexible modes are located in Appendix C.

The corresponding nondimensional frequencies of the free-free beam are

I2i = fl/2 _ (3.54)

which, for this system, are the frequencies used when forming the constant modal damping matrix.

For the free-free beam system, the nondimensional integrals are not determined

analytically. Instead, 11 and 12 are determined by numerical integration. A fourth-order Runge

Kutta integration scheme (detailed in Appendix B) is used, which is the same integration scheme

used to integrate the equations of motion.

The constant matrices are formed using the nondimensional integrals and the

nondimensional frequencies. The time-varying matrices are formed using the mode shapes given

in Eq. (3.52) at the appropriate value of "r. There is nothing gained by writing out the specific

matrices in their symbolic form for this system. The constant mass, stiffness, and damping

matrices for the f'n'st three flexible modes are available in Appendix C.

Since this system is designed to model an inertially free system, there is no gravitational

field present. An initial vibration or an external force is needed to excite the system. For this

simulation, an initial vibration was used rather than an external force. When the SS-MT system is

attached to the shuttle system it is possible for the first mode to be excited due to the attitude control

system of the shuttle. To create an initial excitation the left and right tip deformations were set

equal to .02L with contributions from the first mode only. The moving mass was then released

onto the beam as it was vibrating. The results are presented in Chapter 4.
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3.2 DISCRETE FORMULATION

Section 3.2 develops the discrete formulation of the SS-MT system that was analyzed in

Section 3.1. The results obtained from this derivation are compared to the results obtained by the

continuous formulation derived in Section 3.1. As before, two different systems are examined.

The f'u'st system model, shown in Figure 2, represents a moving mass traveling along an inertially

fixed structure. The second system, shown in Figure 3, represents the mass moving over an

inertially free structure such as the space station.

A general methodology is presented for analyzing any system. In Sections 3.2.5 and 3.2.6

the methodology is made specific for the two systems described above.

3.2.1 Mathematical Model

In this formulation, the continuous systems of the previous sections will be placed into a

discrete representation. As stated previously, a BemouiUe-Euler beam is used to model the flexible

structure. Discrete mass and stiffness matrices are determined for the flexible beam. The

deflection of the beam and all the external forces applied to the beam are made discrete by

introducing an invertible operator that distributes the effects of the moving mass over the

appropriate discrete elements.

First, the discrete equation of motion for the flexible structure is developed by creating

discrete mass and stiffness matrices using either finite-element or lumped-parameter methods.

These matrices represent the physical properties of the flexible structure. The goal is to discretize

the load exerted on the beam due to the moving mass so it can be used with the already existing

property matrices. To achieve this, a vector is formed that distributes the continuous forces along

the beam's discrete points. A vector is created using two different finite-element shape functions:

linear and cubic, which are compared in Chapter 4. Using the equivalent forces, the discrete

equation is formed. To coincide with the continuous formulation the discrete equation is formed in

terms of modal coordinates. This equation is then made nondimensional and placed into state

space domain. The results for the simply-supported and the free-free beam are shown in Chapter

4.
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3.2.2 Equations of Motion

The discrete matrices that represent the mass and stiffness of the beam are determined and

are used to write the general matrix equation of motion for a beam. This equation is the same one

shown in Eq. (3.30) but is rewritten here for convenience

M_+Cq+Kq=F (3.55)

where M, C, K, and F represent the mass, damping, stiffness, and force matrices, respectively.

When this equation was used in Section 3.1, the matrices used represented the physical properties

of the modes used to describe the motion. In the above equation, the matrices represent the

discrete properties of the different beam elements used to model the beam. Even though the two

equations have the same form, they represent two different systems.

First, the discrete mass and stiffness matrices are formed. A discrete matrix for the

damping is not developed in this subsection; however, a modal damping matrix is introduced in

Section 3.2.4. The discrete stiffness matrix is developed using finite-element (or energy-

consistent) techniques. Two different discrete mass matrices are formed. One matrix, developed

from finite-element techniques, is used when it is important to keep the rotational inertias of the

beam elements. The other mass matrix, formed using a lumped parameter model, is used when

only the translational degrees of freedom of the beam elements are required.

Next, a vector is developed that weights the continuous force due to the mass over the

discrete beam elements. This vector is also used to discretize the deflection due to the moving

mass. By combining the discrete property matrices and the discrete forces due to the moving

mass, the discrete equation of motion for the system is formed.

Mass Matrix

The mass matrix for the beam is derived using both a lumped-parameter analysis and the

energy-consistent finite-element method. When the linear shape function is used, the rotational

degrees of freedom are statically condensed out of the mass and stiffness matrices; therefore, a

lumped-parameter model is easily used. When the cubic shape function is used, each element's

rotational degrees of freedom are needed; therefore, the mass matrix will be developed using the

f'mite-element method.
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Lumped-Parameter Model The lumped-parameter method is appropriate only when

the beam's material properties are homogeneous. In this particular analysis, this requirement is

met; therefore, the model is valid. First, the beam is broken up into n finite elements. Then the

mass of each element is distributed between the two neighboring nodes. In the case of the lumped-

parameter model, the mass contribution at each node is half the mass of each element. The mass of

each dement is

me = ple (3.56)

where le is the length of each element and is defined as

le= L
n (3.57)

Since the material properties are continuous throughout the beam, the total mass at each node is the

sum of the contributions from the two neighboring elements. The total mass at each node is

mi=l me + l me 2__i __n

= me (3.58)

Since the first and last nodes only feel the effects of one finite element, the mass contribution at

those nodes is half the mass contribution at the inner nodes.

Each node has a corresponding translation and rotation. Since the rotational inertias of each

beam element are so small, the rotational degree of freedom can be eliminated from the stiffness

matrix by using static condensation.

When the linear shape function is used to distribute the force, only the translations at each

node are important. Therefore, the mass matrix should only contain the translational degrees of

freedom, which is accomplished fairly easily in a lumped-parameter mass matrix. The lumped

mass matrix is diagonal with every other row, starting with the first row, corresponding to the

translational degrees. The other rows correspond to the rotational inertias of each node. Since this

will not be included in the mass matrix, the rotational inertias have not been shown. The final

translational mass matrix has n+l degrees of freedom and is in the following form
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I"..00
Mr= OmiO 1

_o o..j
n+l

n+l

(3.59)

This matrix is constant and discrete.

Finite-Element Model The matrix shown in Eq. (3.59) is used with the linear shape

function. However, when the cubic shape function is used it is necessary to have access to both

the translational and rotational degrees of freedom. It is possible to simply add the rotational

inertias of the elements into the lumped-parameter model shown above. Instead, however, an

energy-consistent mass matrix is developed. The f'mite-element approach is used to show another

way to obtain a discrete mass matrix and is also used for the stiffness matrix. Each element of the

finite-element mass matrix is (Ref. [15])

mij = I_ si sj dx
(3.60)

where si is a f'mite-element trial function. To correctly model a beam element, Hermites cubics are

chosen for the trial functions because they have a continuous spatial second derivative (Ref. [15]).

A trial function is needed for the deflection and the slope at each end of the element. Therefore,

four trial functions for each element are needed. The four cubics are shown below.

s1=1-3 le le (3.61)

t, /, /, (3.62)

s3 = le le (3.63)

s4 = le le (3.64)
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To determine the mass matrix for one element, the above trial functions are substituted into Eq.

(3.60). This expression is then integrated to obtain the elemental mass matrix. The mass matrix is

partitoned into four different matrices

mele[ roll m12 ]
m = _t m21 m22 ._ (3.65)

where me and le are the mass and length of each element, respectively. The four matrices are

mll= [ 156 22/e ]
22 le 4 12 (3.66)

m12=[ 54 -131el
13 le -3 le2 ] (3.67)

m21 = [ 54 13 le ]
-13 le -3 12e (3.68)

m22 =[ 156 -22 le]
-22 le 4 12 J (3.69)

Next, the elemental mass matrices are combined to form the final global mass matrix. At this point

all the degrees of freedom, translational and rotational, are present. Since the inner nodes connect

two consecutive elements, the elemental mass matrices overlap. Therefore, the final global mass

matrix is

m _ me
420n

mli ml2 0 0 0

m21 mll + m22 m12 0 0

0 .. 0
0 O" "" roll + m22 m12

0 0 0 m21 m22 (3.70)

Stiffness Matrix

The stiffness matrix is developed using finite-element techniques. When the linear shape

function is used, only the translations at each node are required. Therefore, the rotational degrees

of freedom are statically condensed out. The global stiffness matrix is developed the same way as
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theenergy-consistentmassmatrix. Usingthef'mite-elementmethod,theelementalstiffnessmatrix
is determinedby (Ref.[15])

(3.71)

Once again the cubics shown in Eqs. (3.61)-(3.64) are substitutedinto Eq. (3.71). After

integration,theelementalstiffnessmatrix is obtainedand,like themassmatrix, is alsopartitoned
into fourdifferentmatrices:

(el), [ kll k12 ]
k= _e t k21 k22 (3.72)

where (El)e is the elemental bending stiffness. The four matrices are

k11=[ 12 61e ]
61e 412e

k12=[ -12 61e ]
-61e 212

-12 -6le ]k21= 6le 212e

k22=[ 12 -6le ]
-61e 412

(3.73)

(3.74)

(3.75)

(3.76)

Next, the element stiffness matrices are combined to form the global stiffness matrix. At this point

all the degrees of freedom, translational and rotational, are present. Since the inner nodes connect

two consecutive elements, the stiffness matrices overlap. Therefore, the final global stiffness

matrix is
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kll k12 0 0 0k (EI)e k21 kll + k22 k12 0 0

-T" o oL 0 0 " k_l +'k22 k12

0 0 0 k21 k22 (3.77)

When the linear shape function is used, Eq. (3.77) is altered to condense out the rotational

degrees of freedom. This reduced stiffness matrix is used in conjunction with the mass matrix

shown in Eq. (3.59). For the cubic shape function, the matrix, as it stands in Eq. (3.77), is used

with the similar mass matrix shown in Eq. (3.70) that contains both the translational and rotational

degrees of freedom.

The global stiffness matrix of Eq. (3.76) can again be partitoned into four separate

matrices, ktt, ktr, krt, and ktt. The subscripts indicate either translational or rotational degrees of

freedom. The partitoned stiffness matrix is

( [k,,k,d
k- t3e [krtkrr] (3.78)

As stated previously, the rotational degrees of freedom are eliminated when using the linear shape

function. The rotational degrees of freedom are statically condensed out. This is achieved by

using the static matrix equation in Eq. (3.79):

{v}01Lkrt krr J 19 (3.79)

where v is a generic translational coordinate and 0 is a generic rotational coordinate. Solving for 0

in terms of the translation, v, the reduced stiffness matrix becomes

Kt = kn - ktr kT krt (3.80)

Eq. (3.79) is a square matrix that is constant and has (n+l) degrees of freedom. When the

rotational degrees are not eliminated, the stiffness and the matching mass matrix has (2n + 2)

degrees of freedom.
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Beam Equation

Using the mass and stiffness matrices defined above the beam equation of motion is

determined as

M_I+Kq= Ft (3.81)

where M and K are generic discrete matrices representing the appropriate mass and stiffness

matrices, depending on which case is being examined. The nodal displacements, contained in the

q vector, represent the displacement at each node for the different elements. The nodal

displacements, q, should not be confused with the modal displacements, r/, discussed in Section

3.1.2. The total discrete force vector, Ft, is a combination of any external forces applied to the

beam and the inertial effects of the moving mass. This force vector is the discrete form of the

vector F t . It correctly weights the effects of the moving mass onto the nodes of the beam. It is

made discrete by using the discretization vector defined below.

Discretization Vector

In order to weight the effects of the continuous force between two discrete nodes, an

invertible operator, called the discretization vector because it places the continuous forces into a

discrete form suitable for Eq. (3.81) is developed. For any arbitrary time the discretization vector

weights the effects of the moving mass. Since the mass is moving along the the beam, the vector

must change with time to reflect this motion. Finite-element shape functions are used to distribute

the forces. Two different shape functions are examined below. The first function, which is based

on a linear interpolation, only looks at the translation at each node. The second function, which is

of cubic order, takes into account the translation and rotation at both nodes. The difference

between the two approaches is examined at length in Chapter 4.

The two shape functions are developed in the same manner. A weighting function is used

to locate the position of the moving mass with respect to the two appropriate nodes. The weighting

function is defined as

_ x.._m_m- x_/
Xi+l - Xi (3.82)
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Theweightingfunction,4, dependson thedistancebetweentwo neighboringnodes,xi and Xi+l.

Note that xi is def'med as the nodal position that is either directly at or to the immediate left of the

moving mass. As soon as the point mass passes the xi node location it is considered to be at the

Xi+l position. The other variable, Xm, has previously been defined as the location of the moving

mass.

The weighting function 4 in Eq. (3.82) is the discrete version of the continuous dirac delta

function. The continuous function places the mass at a specific point, whereas 4 weights the force

between two neighboring nodes.

To simplify the numerical evaluation of 4, xi is written in a suitable style for numerical

evaluation. Two relationships are needed to accomplish this. First, as stated previously, the mass

is considered to move at a constant speed; therefore, the position of the mass at an arbitrary time is

always known. Next, it is assumed that the finite elements are of equal length. Using these facts,

the distance between the two elements can be expressed as a function of the total beam length.

These two relationships are shown symbolically as

x,,, = Vmt (3.83)

Xi+l " xi = L
n (3.84)

Using the above two relationships, weighting function _ is rewritten as

n
4 = (Vrat- xi) L (3.85)

where xi is numerically calculated from

xi = int (_ Vmt) ZLr. (3.86)

The int ( ) function truncates and retains only the integer portion of a real number argument. Note

that if the i th node was defined as the node immediately to the right of the mass, then the position

ofxi would be rounded up rather than truncated down as shown in Eq. (3.86).

Equations (3.85) and (3.86) are used to numerically evaluate the weighting function 4-

The first operator is linear with respect to the weighting function 4.
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v, = -¢)v,+¢v,., (3.87)

where the following vectors are def'med as

={o,o, i" I(1 x 3_

•,0, 1,0,0,...,0 I

(i+l)_ }(1 x f)V ir+1= 0,0,...,0, 1 ,0,0,...,0

(3.88)

(3.89)

wherefis the degree of freedom for the particular system being analyzed. When the above vectors

premultiply the vector of nodal displacements, velocities, or accelerations, they will locate the ith

and (i+1) th, values respectively. In this method there are only translational degrees of freedom;

therefore, only one value at each node is required. In the cubic shape function, however, it is

necessary to capture two values at each node.

When _ is equal to zero, all the effects of the moving mass are placed at the i th node.

When _ is equal to one, all the effects are placed at the ith+l node. For ¢ values between zero and

one, the effects are appropriately weighted between the two nodes.

The form of the linear interpolation function is easily determined without much

computation. However, when the translations and the rotations at each node must be considered,

the function's form is not easily seen. Therefore, the cubic shape function is developed in a more

theoretical manner.

Cubic Shape Function Definition

As in the linear case, the cubic shape function is depicted as a function of _ but for the

cubic function, the coefficients are defined in terms of _, _2, and _3. Also, in this case, there are

two displacements at each node - translation and rotation. The values of each node can be thought

of as the boundary conditions for the shape functions. When there are only two boundary

conditions to be satisfied, a linear function will suffice. To satisfy four boundary conditions,

however, a cubic function is required.
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Sincetherearefour valuesthat need to be captured (two at each node), four V vectors are

needed, Vi, Vi+l, Vi+2, and Vi+3. The In'st and third vectors capture the translation at the ith and

(i+1) th nodes, respectively. The second and fourth vectors capture the rotation at the same

respective nodes. Using these four vectors, the cubic shape function is determined using the

standard finite-element method for determining shape functions, outlined below.

In determining the cubic shape function, it is necessary to develop four trial functions that

will multiply the four vectors described above (Ref. [18]):

V3 = Ti Vi + Ti+l Vi+l + Ti+2 Vi+2 + Ti+3 Vi+3 (3.90)

Each trial function has the cubic form

Ti = ai_ + bi¢ + ci_ 2 + di_ 3 (3.91)

The constants for each trial function are obtained by employing the four appropriate boundary

conditions for each function (displayed in Table 1).

Table 1. Boundary Conditions used in Determining Cubic Trial Functions.

Trial Function

Ti

Ti+l

Ti+2

Ti+3

_=0

Ti=le 7"¢i=0

Ti+l=O Te,/+l= le

Ti+2 = 0 T_i+2 = 0

Ti+3 = 0 T_i+3 = 0

4=1

Ti=O T_i=O

Ti+l=O T_i+l=O

Ti+2 = le T_i+2 =0

Ti+3 = 0 T¢i+3 = le

In Table 1 the subscript _ indicates a derivative with respect to _. A similar table for the linear

shape function could have been developed. However, in the linear shape function example it is

trivial to develop the two lrial functions.

Using these conditions the four shape functions are determined. It is found that the

appropriate trial functions are the Hermite's cubics described in Eqs. (3.61)-(3.64). Substituting

these trial functions into Eq. (3.90) leads to the final cubic shaping vector
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(3.92)

For the general discrete derivation of the final equations, a generic discretization vector V is

employed. This V vector represents either V1 or V3, depending on which interpolation function is

used.

Load Modeling

The force exerted on the beam is broken up into two components: the first encompasses

any external force that is applied to the beam, and the second is the force exerted on the beam due

to the inertial effects of the moving mass. The total force is the sum of both components.

Ft=Fext +Fm (3.93)

Force Due to the Inertial Effects of the Moving Mass. The force due to the

inertial effects of the moving mass is equal to the force created by the acceleration of the moving

mass but it is opposite in direction. As seen in Section 3.1, the force is proportional to the absolute

acceleration of the moving mass. This acceleration, however, is now given in terms of the discrete

displacement field of the moving mass, qm.

t92qm {Xm(X,t),t) )Fm (Xm(X,t),t) =- mm l _2 ]abs (3.94)

where _Vm is the moving mass's discrete force vector. Equation (3.94) is the discrete counterpart

of Eq. (3.2). In the following derivation, the functional dependence of the variables are omitted

for brevity.

The absolute acceleration of the discrete displacement field qm, must be determined. In

order to do this, a relationship is needed between the beam's displacement field and the moving

mass' displacement field. In essence, a discrete counterpart of Eq. (3.4) is needed, which is

accomplished by using the discretization vectors defined above. For a general methodology, the

generic shape function V is used. The relationship between qm and q is defined as

qm = V T q (3.95)
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Using Eq. (3.95), the absolute acceleration of the moving mass is written in terms of the

beam's displacement. When determining the absolute derivatives, it is important to specify the

variables of which V and q are a function. For simplicity it is assumed that V is a function of

only and _ is independently a function of time. The beam's displacement field q, is only a function

of time. Using these conventions and the definition of an absolute acceleration determined in

Section 3.1, Eq. (3.94) becomes

Fm='mr, a[VT?I+2 VT_I+(V_'_+ vT_(_Jq] (3.96)

In this system, the mass is assumed to move at a constant velocity; therefore, _ is equal to zero.

Using the definition ofx shown in Eq. (3.85), its derivative with respect to time is

_=v_n
L (3.97)

Using Eq. (3.19), the above equation is rewritten as

_=n
," (3.98)

where • was previously defined as the time required for the mass to move over the entire beam

length. Written in this form, it becomes apparent that _ represents a first-order discrete spatial

derivative. For the duration of the general derivation, the spatial derivatives, V_" and V__, are kept

in their symbolic form. The actual values of both quantities for the linear and the cubic shape

functions can be found in Appendix C.

When using the linear shape function, the last term in Eq. (3.96) is zero. This term

represents the force exerted on the beam when the mass moves over the beam's curvature. By

examining the continuous case, it is apparent that this term adds a substantial force to the beam.

Therefore, an impulse force is added to correctly model this force that results from the difference in

slope of two neighboring elements (see Figure 4 and Section 3.2.6).

When the higher-order, cubic shape function is used, the last term in Eq. (3.95) is not zero

and the force from the beam's curvature appears without having to add an impulse force.
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Theinertial forcedueto themovingmassis now in adiscreteform. Thenextchallengeis

to distributethe total force appliedto thebeambetweenappropriatenodes. UsingEqs. (3.93),

(3.95,)and(3.98),thetotal forceappliedto thebeamis

(3.99)

External Force. The external force applied to the beam is different for the two systems

that are examined. For this derivation the external force is kept in its symbolic form.

The total force is distributed between the appropriate nodes of the beam, which, in this

analysis, is accomplished by using the same finite-element shape functions described in detail in

the beginning of this section. Using these shape functions, the total discrete force is distributed to

the appropriate nodes as

N

Ft = V Ft (3.100)

Using Eq. (3.99) this force becomes

V vT_ q + (2tz _ V vT_q} (3.101)

Equation (3.101) is the discrete form of the force shown in Eq. (3.9).

System Equation of Motion

The entire discrete equation of motion for the system is obtained by substituting Eq.

(3.101) into Eq. (3.99) resulting in Eq. (3.102) below. As in the continuous case, the terms

involving the beam's deflection q, are shown on the left-hand side of the equation, even though

they appear due to the inertial effects of the moving mass.

(M + mm vVT)q + 2ram n VV_q+I_, + mm(_V V_}q=- VFext (3.102)

Equation (3.102) is already in matrix form, unlike its continuous counterpart shown in Eq. (3.10),

and is dimensional and in terms of the physical discrete beam coordinate q. Since the boundary
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conditionsof the beamhavenot yet beenspecified,the aboveequationis valid for either the

simply-supportedor thefree-freebeam.

3.2.3 Nondimensional Equations of Motion

Unlike the equations in Section 3.1, Eq. (3.102) first is made nondimensional and then is

transformed into the beam's modal coordinates. For the discrete analysis, it is easier to perform

modal reduction once the equation is in nondimensional form. Even though Eq. (3.102) is a

matrix equation, the same general procedure is used to place the equation into a nondimensional

form. A matrix is considered nondimensional if each of its elements are nondimensional.

Therefore, each element is divided by the appropriate reference parameter, defined in Section 3.1

When a common variable appears throughout an entire matrix, it can be extracted and

placed in front of the matrix. This technique is used to define nondimensional mass and stiffness

matrices. Referring to Eqs. (3.65) and (3.72), the new nondimensional matrices are

_=P -_L'_ (3.103)

_= E_-_/_ (3.104)

In a similar manner, the vectors containing the nodal accelerations, velocities, and

displacements are made nondimensional by dividing each of their elements by the appropriate

reference parameters. Again, some variables can be extracted and placed in front of the vectors.

Since all the variables are in front of the matrices, they are treated as scalars. These are combined

to form the familiar nondimensional parameters defined in Eqs. (3.21)-(3.24). Using the new

matrices, vectors, and nondimensional parameters previously defined, Eq. (3.102) in

nondimensional form becomes

(3.105)

where

#f= Fext t2 = Fext
p L 3 p_-L

(3.106)
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is a new nondimensionalforce parameterrepresentinga genericnondimensionalexternalforce.

Equation(3.105)next is transformedinto modalcoordinates,makingit easierto placeinto state

spacedomain.

Modal Solution

Equation (3.105) is now transformed from the discrete physical beam nodal coordinates, q,

to the beam's modal coordinates. At this point, the actual boundary conditions of the beam become

integral. The equation, as it stands, is valid for any boundary condition; however, depending on

the modes used, the equation is made specific for the boundary condition being examined. The

exact equations for the simply-supported and the free-free systems are shown in Sections 3.2.5

and 3.2.6, respectively.

In Section 3.1, a modal transformation was explained for the continuous formulation. The

form for the discrete formulation is the same. Instead of defining a continuous mode shape _(x), a

discrete modal matrix ¢, is defined. The actual modal coordinate 77i, is the same whether it is

defined by the continuous mode shape and the beam's continuous displacement field u, or by the

discrete modal matrix and the beam's discrete displacement field q.

= L tpr/ (3.107)

A description of some characteristics of the modal matrix follows. The actual

transformation from physical coordinates to modal coordinates is completed. The resulting

equation is nondimensional, is in modal coordinates, and is easily placed into state space domain.

Modal Matrix

The transformation from generalized coordinates to modal coordinates for the continuous

formulation was shown in Eq. (3.11). A similar transformation, shown in Eq. (3.107), is valid

for nondimensional vectors. The mode shapes used are in the form of a modal matrix and, like the

mode shapes already used, this modal matrix does not have any dimensions. Unlike the scalar

operation shown in Eq. (3.11), Eq. (3.107) represents a matrix equation. The modal matrix

consists of the eigenvectors of the simplified system
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M _+ K-_=O (3.108)

Equation (3.108) describes the discrete motion of the flexible beam without the moving

mass. The number of modes present corresponds to the number of the system's degrees of

freedom.

Transformation of Eq. (3.105)

Using the substitution shown in Eq. (3.107), Eq. (3.103) is transformed into modal

coordinates. A discrete version of Galerkin's method, outlined in Section 3.1, is used. The

resulting equation is premultiplied by the transpose of the the modal matrix to reduce the modal

reduction error. This process is the matrix equivalent of using the continuous mode orthogonality

to drive the error of the approximation to zero. For clarity, a definition of certain relationships

follows.

First, the modal matrix ¢ is orthogonal with respect to the mass matrix, and is also mass

normalized. This state leads to the following two definitions:

¢r_# =E (3.109)

¢T_¢ = A (3.110)

E has previously been defined in the nomenclature. A is the nondimensional matrix of eigenvalues

corresponding to the system shown in Eq. (3.108). The A matrix is different depending on the

boundary condition being examined. The dimension of the modal matrix is equivalent to the

system's degree of freedom. For example, a free-flee beam that is divided into ten equal beam

elements has twenty degrees of freedom. It is not numerically efficient to retain all of these

modes; therefore, before doing any numerical evaluation, the modal matrix and the corresponding

eigenvalue matrix are reduced to retain a small number of nodes. In the actual numerical analysis,

three flexible modes are retained. The reduced matrices are identified by a subscript r.

Second, the following relationships are defined for the weighting vectors with the reduced

modal matrix.

V_- V r #r (3.111)
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T
Vn,- V_ (3.112)

T
Vn_- = V_ _ (3.113)

Third, the modal damping matrix is developed. Since the modal decomposition of the

discrete system is equivalent to the modes used for the continuous system, the modal damping

matrix is the same. The damping due to the motion of the beam is assumed to be diagonal where

the elements are defined by Eq. (3.32). The modal damping matrix is rewritten below for

convenience.

Cq = 2 _(_ Ar) 112 (3.114)

The matrix of Eq. (3.114) is defined in terms of the reduced matrix containing the eigenvalues

defined in Eq. (3.110).

Using the nondimensional modal coordinate 77 and the relationships defined in Eqs.

(3.109)-(3.114), the nondimensional equation in modal coordinates becomes

(E + ]Am Vr/V T) °T'/°+ (2 _(_,At)I/2 +2/2ran Vri vT_)

+ (_ Ar + Prn n2 Vrt VT_) rl = " #f Vrl (3.1 15)

Equation (3.115) is the discrete counterpart of Eq. (3.27). It is a nondimensional matrix

equation rather than a continuous integral equation like that shown in Section 3.1. Though Eq.

(3.114) is a matrix equation, it is not in the typical state space form easiest for numerical

evaluation.

3.2.4 State Space Representation

Even with a matrix equation, the first step in forming a state space representation is

choosing the state variables. Once the state vector is formed, Eq. (3.115) is transformed into the

state space domain.
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State Vector

Two states variables are defined for the continuous system: the modal displacements and

the velocities. Since the discrete analysis is already in matrix form, the state vector is written as the

combination of two vectors

[ ox= 7"/ 7/ (3.116)

There is a difference between the number of elements used to model the beam n, and the number of

modes retained to model the displacement of the beam N. The modal vectors have N elements,

whereas the q vector contains n values. Usually only three flexible modes are retained, whereas

there might be 100 beam elements used to capture the beam's physical displacement.

Matrix Representation

The mass, stiffness, damping, and force matrices that are used to describe the system's

states are determined. Similar to the matrices obtained for the continuous formulation, the

following matrices are a combination of a constant matrix and a time-varying matrix. The time-

varying components are a function of the discretizations vector V.

M = E +/.tin Vr_ V T

T
C = 2 _(_, Ar) 112 + 2 I.tm n V. Vn_

T
K = l Ar + ].lm n 2 V_ V_7_

(3.117)

(3.118)

(3.119)

It is interesting to see the similarities between the matrices shown here and the matrices

shown in Eqs. (3.34)-(3.41) The matrices in Eqs. (3.117)-(3.119) are the discrete counterparts of

the previously shown matrices. The constant components of Eqs. (3.117)-(3.119) are the standard

mass, damping, and stiffness matrices obtained when developing a finite-element model of a

flexible beam. The time-varying components actually model the dynamics associated with the

moving mass.
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Thematrix representingthe total discrete modal force applied to the beam must be formed.

The actual force applied depends on the physical system being modeled. For example, if the beam

is considered to be simply-supported, then a gravitational field is included as part of the

environment. However, when the free-free beam is examined, no gravitational field in included to

correctly model the space environment. Sections 3.2.5 and 3.2.6 examine the discrete force matrix

for each system in detail.

The mass, damping, stiffness, and force matrices are used in Eq. (3.32) to solve for the

modal displacements and the modal velocities. Using Eq. (3.107), the nodal displacements and

velocities are obtained.

This concludes the derivation of the general discrete formulation. Sections 3.2.5 and 3.2.6

examine two specific systems. Section 3.2.5 analyzes the inertially fixed system, which is

modeled using a simply-supported beam. Section 3.2.6 examines the inertially free system,

which is modeled as a free-free beam. The results for each model are presented in Chapter 4,

which compares them to the results obtained from the continuous formulation of Section 3.1.

3.2.5 Applications to a Simply-Supported Beam

Unlike the continuous formulation examined in Section 3.1.6, the discrete formulation for

the simply-supported beam is no easier to formulate than the free-free beam. The simply-

supported beam is examined and presented first so that its discrete methodology can be validated

against well-known results. The inertially fixed system is also used to determine which shape

function, linear or cubic, accurately models the beam with the smallest number of f'mite elements.

Simply-Supported Beam using the Linear Shape Function

For a simply-supported beam modeled with n finite elements there are 2n degrees of

freedom; there are n - 1 translational degrees of freedom and n + 1 rotational degrees of freedom.

As stated earlier, the linear shape function only uses the beam's translational degrees of freedom;

therefore, each element's rotational degrees of freedom can be ignored. The reduced mass and

stiffness matrices are derived from the mass and stiffness matrices shown in Eqs. (3.59) and

(3.77). Since the beam is simply-supported, the first and last nodes are constrained to zero

translation, leading to a mass and stiffness matrix with n - I degrees of freedom.
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Becausethe shapefunction is linear, its secondspatialderivativeis zero. However,as

shownin Figure4, thereis adifferencein slopebetweenthetwoneighboringfiniteelements.This
differencein slopeleadsto an importantcomponentof theinertial forcecreateddueto themotion

of themass,which,for the linearshapefunction,is notpresent.To accountfor this inertial force,

which is proportionalto thebeam'scurvature,anartificial impulseforce is addedto theequation.
In orderto model this force,animpulseforceis calculatedassoonasthemassmovesto thenext
element.

Figure4.

i+1

i-1

Difference in slope of two neighboring finite elements.

Using the value of the resulting force, an equivalent constant force defined in Eq. (3.120)

is applied over the entire element.

],ye_fy At

Ate (3.120)

where Ate is the time required for the mass to travel over one element. The actual impulse force,

fyAT, is defined as

fy At = mra Vm I_ B q (3.121)

The vector B, defined in Eq. (3.122), is a central finite-difference operator that acts on the two V

vectors, which determine the translations at each node.

-{vL-2 vT+ (3.122)
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Using Eqs. (3.120), (3.121), and (3.122), the final equivalent force vector due to the beam's
curvatureis

lye =mm (_B q (3.123)

This force is added to the force term shown in Eq. (3.96).

Comparing Eq. (3.123) with the term that appears in Eq. (3.99) it seems that the vector B

is the linear equivalent of V__. However, B is actually the second-order finite-difference

approximation to the second spatial derivative of the V vector.

Simply-Supported Beam using the Cubic Shape Function

When the cubic shape function is used, the component of the inertial force due to the

beam's curvature results from the second derivative of the V vector. For the simply-supported

beam depicted in Figure 2, the cubic shape function V3, has 2n elements. These 2n elements

correspond to the 2n degrees of freedom of the simply-supported case when the rotational inertias

are included.

Modal Matrix for the Simply-Supported Beam

The modal matrix is evaluated by finding the eigenstructure of the simplified system

depicted in Eq. (3.108). The dynamics are dictated by the mass and stiffness matrices. For a

simply-supported beam, the matrices are reduced to eliminate the constrained degrees of freedom.

The beam's boundary conditions specify that the translations at each end are zero. To address this

condition, the first and last rows and columns of the matrices are eliminated.

For the linear shape function, the mass and stiffness matrices contain only translations,

which represents an n - 1 degree-of-freedom system. The reduced mass and stiffness matrices are

variations of the matrices defined by Eqs. (3.59) and (3.77).

The cubic shape function requires that both the translation and the rotations are present.

Therefore, the reduced matrices come from the matrices shown in Eqs. (3.70) and (3.77). Note

that if the system is cantilevered, it is not possible to statically condense out the rotational degrees
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of freedom becausethey must be presentin order to be eliminated to satisfy the boundary
conditions.

Whenmodelingthesimply-supportedenvironmentit is essentialto includeagravitational

field, theonly externalforce appliedto thebeam. The gravitationalforce is proportional to the

movingmass.Thediscretenondimensionalformof thisforceis

VFext = " _gV (3.124)

where/.tg is the nondimensional gravitational parameter defined by Eq. (3.50). This external force

matrix is the same matrix F, used in Eq. (3.32).

3.2.6 Applications to a Free-Free Beam

There are three differences between the formulation of the free-free beam depicted in Figure

3 and the simply-supported beam evaluated in Section 3.2.5:

(1) The degree of freedom.

(2) The modes used.

(3) The external force.

It has been shown that the cubic shape function is more efficient than the linear

interpolation function when using the simply-supported beam. Therefore, in analyzing the free-

free beam, only the cubic shape function will be used. Consequently, the mass and stiffness

matrices are variations of Eqs. (3.70) and (3.77). The boundary conditions of a free-free beam

state that the shear and moment at each end must be zero. These conditions do not constrain any

degree of freedom. Therefore, the free-free beam and, correspondingly, the mass and stiffness

matrices have 2n+2 degrees of freedom.

These mass and stiffness matrices are used in forming the system's mode shapes and

eigenvalues. Before reduction, the modal matrix and the matrix of eigenvalues contains 2n+2

elements. The first two modes correspond to rigid body rotation and translation and have zero

frequency. The other 2n modes represent the beam's flexible motion.
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The free-free beam is used to model an inertially free system. In the space environment

there is no gravitational field. If there is no external force applied to the beam their would be no

response from the motion of the mass, unless an initial disturbance is used. The details of this

vibration were outlined previously in Section 3.1.6.

3.3 DISCRETE FORMULATION FOR THE FREE-FREE

BEAM WITH MULTIPOINT OF CONTACT

In the analysis thus far, the model has been a flexible beam with a rigid body attached at

one contact point to the beam. In both the continuous and discrete formulations, a free-free beam

and a simply-supported beam were examined. The simply-supported beam is used as a testing

board for the discrete method outlined. The inertially free system is used to try and model the

space environment of the Space Station-Mobile Transporter system; however, it still only models

the mass as a wheel moving over the beam rather than as the more realistic train moving along a

track. The next system analyzed, a free-free beam with multipoint of contact, is used to consider

the train/track aspect of the SS-MT system.

3.3.1 Mathematical Model

The mathematical model used here, as before, is essentially the inertiaUy free flexible beam

with a mass moving at a constant speed along its length. For this analysis, however, the mass is

attached at two points of contact (see Figure 5).

Vm

i' i

Figure 5. Mass attached at two-points of contact.
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This final model represents the physical aspect of the mobile transporter as a train rather than

simply a wheel as presented in Sections 3.1 and 3.2. The validity of the discrete methodology for

this model is shown in Chapter 4, using the formulations developed in Sections 3.1 and 3.2.

For the train/track model, only a discrete formulation is considered. When the two points

of contact become infinitely close, the equations developed in this section should converge to the

discrete equations for the one-point-of-contact case. This is proven to be true in Chapter 4.

Therefore, since this method converges to a method that is already proven to be valid, there is no

need to compare the results obtained from the following formulation with those of a continuous

formulation.

In Chapter 4, only an inertially free system is examined with two points of contact. In the

following section a general derivation is developed. For the applications to the free-free beam see

Section 3.2.6.

The only difference between the discrete system examined in Section 3.2 and the system

analyzed here is the manner in which the inertial force due to the moving mass is applied to the

beam. Because there are now two points of contact, there are correspondingly two continuous

forces due to the mass acting on the beam. Both forces must be made discrete and must be

incorporated into the beam's equation of motion.

As in Section 3.2, the analysis starts by discretizing the load applied to the beam. This new

load is then incorporated into the beam's equation of motion to obtain the equation of motion for

the entire system. This equation is made nondimensional and placed into state space form for

numerical computation.

3.3.2 Equations of Motion

The equation of motion for the train/track system depicted in Figure 5 is obtained with a

series of steps. First, the discrete equation representing the displacement of the flexible beam is

determined. Next, the force due to the moving mass is examined. Using compatibility, these

equations are combined to form the system's equation of motion. Because this system is very

similar to that depicted in Section 3.2, the following formulation is abridged to avoid repetition.
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Beam Equation

The discrete equation of motion for a flexible beam, shown earlier in Eq. (3.81), is

rewritten here for convenience.

M cl + K q = Ft (3.125)

where, for an inertially free system, the mass and stiffness matrices are defined by Eqs. (3.70) and

(3.77), respectively. Ft is the total discrete force vector and is a combination of the external forces

applied to the beam and the inertial effects of the moving mass. Ft is the discrete form of Ft. As

stated in Section 3.2.7, there are no external forces applied to the free-free beam. Therefore,

without the loss of generality, the total force applied to the beam is only due to the inertial effects of

the moving mass.

Load Modeling

The total load exerted on the beam due to the moving mass is the sum of the forces exerted

by the two points of contact

Ft =fd +fc2 (3.126)

The total load applied to the beam, due to the inertial effects of the moving mass, is the

same as in the one-point-of-contact case. However, the load is now divided between the two

points of contact. For simplicity, each point is assumed to carry half of the total load; therefore,

the magnitude of the force at each contact point is half as great as the force exerted at the one

contact point in Section 3.2. The force contribution from one of the contact points is

fcl = -mm _]ml
2 (3.127)

where qml is the discrete displacement of the first contact point. The load at the second point of

contact is determined in a similar fashion. Substituting the actual values for the load contributions

into Eq. (3.126), the load exerted on the beam due to the moving mass becomes

Ft = [mmi°32qm11 mm(O2qm21 )
- )obs+ )ob,j (3.128)
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Discretization Vectors

The force shown in Eq. (3.128) must be placed into a discrete form. In the derivation it is

assumed that the distance between the two contact points is a multiple of the elemental length of the

f'mite beam elements:

zi = j le (3.129)

where j is any integer between 0 and n. This assumption simply makes the bookkeeping a lot

easier.

The cubic shape function outlined in Section 3.2.2 is used to distribute the forces. The

location of the first point of contact, x 1, is determined. From this location, the position of the

second point, x2, is determined by knowing the speed of the moving mass and the spacing

between the two points of contact.

Because the two locations are dependent on each other, it is only necessary to follow one of

the points; Xl has been chosen to locate the position of the mass. The force contribution from this

point is discretized using the shape function shown in Eq. (3.92) and rewritten here:

(1-3¢2 ¢2= +2_3) Vi+(_-2 +¢3)1Vi+ I

(3.130)

The load contribution due to the second point of contact is discretized using a shape

function of the same form but with different nodes that are determined by using the relationship

between the two points of contact. If i represents the location of the first point Xl, then i'

represents the location of the second point x2. The relationship between i and i' is

i' = i- 2j (3.131)

Next, the weighting vectors for the second point of contact are formed. The new vectors are

denoted by a prime and are formed using i' rather than i.
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i'.th yv'T= 0,0,...,0, 1 ,0,0,...,0 (3.132)

Using these new V" vectors, an equivalent cubic shape vector for the second point of contact is

determined.

÷l, +/¢'+ (3.133)

The equations in Section 3.2 were derived using a generic shape function V. The new

shape function developed here, V3', has the same basic format as V. Therefore, the discrete

development that was shown in Section 3.2 is valid for the new vector V3'. The equations that

will be developed, however, are different because the force applied to the beam now has two

components rather than one.

In the following formulation, a generic V' is used to represent the new shaping function.

Though a cubic shape function was developed (Eq. (3.133)) and is used in the numerical

evaluation, the following methodology is valid for any order shape function.

Some relationships are defined between the displacements of the contact points, the shaping

functions, and the beams displacement field.

qml = V T q (3.134)

qrae = V "T q (3.135)

Using Eqs. (3.134) and (3.135), the absolute accelerations of the two points of contact are

determined and substituted into Eq. (3.128). The resulting force is inserted into Eq. (3.100),

resulting in the discrete force vector that is applied to the appropriate nodes of the flexible beam:

= 2 n VV_ (_VV_q)F't -m---_m(VVT_+2 {_:) q+

" m----_m(V'2 V'T q + 2 (_ ) V' V'_ ?I + {-_ _ V" V'_g q) (3.136)
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where V'_ and V'_ represent the derivatives with respect to _ of the new shape function. For the

duration of this derivation, V'_ and V'_ are shown in their symbolic form; their actual values are

available in Appendix C. Now that the force due to the moving mass has been placed in a discrete

form, it can be inserted into the discrete equation of the flexible beam.

System Equation of Motion

The discrete equation of motion for the system is obtained by combining Eqs. (3.136) and

(3.125). As in the previous cases, the terms involving the beam deflection q, are shown on the

left-hand side of the equation even though they appear due to the moving mass.

(M+_2 (V V T+ V" v'T)}q+2 mmll-[VV_+ V'V'_)q2 z_

+( _+mm(n_(V2'z! V_+ V'V'_))q=O (3.137)

Equation (3.137) represents a discrete equation of motion in physical coordinates. When the two

points of contact are infinitely close to each other, Eq. (3.135) is equivalent to Eq. (3.105). This

equation must be placed into a nondimensional form in terms of the beam's modal coordinates.

3.3.3 Nondimensional Equations of Motion

Noticing the similarities between Eqs. (3.105) and (3.137), it is trivial to place the latter

equation into nondimensional modal form (see Section 3.2.3). Therefore, to avoid repetition the

derivation is not repeated here. The nondimensional form in modal coordinates of Eq. (3.135) is

2
T

_'(_4r)lt2 + 2 _-n(V_ Vrl_+ V'rt v'T{)) _

, ' ' ))Vn_ + V' n V'n_ _ 71= 0
(3.138)

where the V'rl vectors are found using the relationships outlined in Eqs. (3.111) - (3.112) for the

new shape function.
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Equation(3.136)is themultipointof contactcounterpartof Eq.(3.115);it is in matrixform

butnot in statespacedomain. Equation(3.135)is placedinto thestatespaceform in preparation

for numericalcomputation.

3.3.4 State Space Representation

The only differences between Eq. (3.136) and (3.115) are the additional terms to the time-

varying mass, damping, and stiffness matrices due to the second point of contact. The procedure

for transforming Eq. (3.138) into state space domain is equivalent to that outlined in Section 3.2.4.

State Vector

The two states of the system are chosen as the modal displacements and velocities. The

state vector is equivalent to the one presented in Eq. (3.116). Because a discrete analysis is already

in matrix form, the state vector is rewritten in a slightly different manner than in the case of when

the variables were scalars. This was first shown in Eq. (3.116) and is rewritten here:

x= (3.139)

Matrix Representation

The matrices representing the system are a combination of a constant matrix and a matrix

that varies with time. The constant matrices represent the dynamics of the flexible structure. Since

the flexible structure modeled in this analysis is equivalent to that modeled in Section 3.2, the

constant matrices are identical to those outlined previously. The matrices dependent on time model

the dynamic interaction of the moving mass with the flexible structure. This interaction is the

difference between the case in Section 3.2 and this case. The total matrices used to formulate this

system in the form shown in Eq. (3.32) are

M= E + _-_ (Vrl V T + V'n V 'T) (3.138)

c 2 +2 .. v, +v',
(3.139)

K = & Ar +___ n2 {Vn TV,_,, + V',_ V'rn,_)
(3.140)
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The abovematrix definitions arevalid for anyboundaryconditions. For the numerical

evaluation of this system, only the free-free beam is examined. For the alterations needed to

specifically examine a free-free beam, see Section 3.2.6.
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CHAPTER 4

RESULTS

Chapter 4 presents the results obtained using the analysis outlined in Chapter 3. Section

4.1 describes the layout of the results as well as the parameters used to create them. Section 4.2

displays and discusses the results.

4.1 RESULTS ORGANIZATION

Section 4.1 describes the organization of Section 4.2, which displays the results obtained

from the different formulations of Chapter 3. Three different formulations were developed in

Chapter 3:

(1)

(2)

(3)

Continuous.

Discrete - one point of contact.

Discrete - multipoint of contact.

In addition to these three different formulations, two specific systems were examined:

(1) Simply-supported beam.

(2) Free-free beam.

To ease the complexity of the next section it is important to understand how the simulations

are organized, what they are trying to accomplish, and what parameters are used to create them.

To aid in this understanding, Section 4.1 is divided into two subsections. Section 4.1.1 discusses

the goals of Chapter 4 and the way they are obtained. Section 4.1.2 examines the nondimensional

parameters used to set up the simulations. For a description and listing of the computer codes used

to perform the simulations, see Appendix D.

4.1.1 Goals of Chapter 4

Chapter 4 has three main goals:

(1) Validate the discrete formulation for the one- and multipoint-of-contact cases with a

simply-supported and a free-free beam.

(2) Determine which shape function, cubic or linear, best models the system's

displacement.
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(3) Perform several informative parametric studies. These studies show the effects of

the nondimensional parameters, developed in Chapter 3, on the system's dynamics.

Section 4.2 contains fifteen pages of plots. Each page displays either two, four, or eight

plots, depending on the specific study being run. Figures 6 through 11 represent the simply-

supported system. Figures 6, 7, 8, 10, and 11 represent time history of the nondimensional

midspan deflection. Figure 9 presents a profile of the entire beam for different values of

nondimensional time. The displacements shown in Figure 9 are also nondimensional. For the

simply-supported beam all the displacements are made nondimensional by Us, the maximum static

deflection of the beam.

Figures 12 through 20 display results for the free-free system. For each study performed

there are two sets of plots. The first plots, Figures 12, 15, 17, and 19, display the time history of

the nondimesional deflection at the beam's left tip. The second plots, Figures 13, 16, 18, and 20,

display the time history of the nondimensional deflection at the beam's right tip. Figure 14

presents a profile of the entire beam's nondimensional deflection. First, the organization for the

simply-supported beam is explained; then, the free-free system is discussed.

Simply.Supported Beam

The first study performed for the simply-supported beam determines the shape function that

best models the beam's displacement while using the least amount of finite beam-elements. To

accomplish this, a comparison using a different number of beam elements was made between a

continuous formulation and both the linear and cubic shape functions. The results presented in

Section 4.2.1 illustrate that the cubic shape function is better suited to model the displacement;

therefore, in the following discrete simulations only the cubic shape function is used.

The second study compares the discrete and continuous formulations for different values of

the speed parameter a (see Eq. (4.5)). This study effectively validates the discrete formulation for

the simply-supported beam. Consequently, the following simulations are performed for the

discrete cubic formulation only.

The third study presents snapshots that show the profile of the entire beam for different

time frames. The first set of snapshots models the beam as the mass is moving along the beam.

The second set examines the beam in free vibration, after the mass has left the beam.
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Finally, a parametric study is performed for the simply-supported system, which examines

the result of including the inertial effects of the mass versus simply modeling it as a moving force.

First, different runs are completed for a specific mass ratio with different speed parameters. Then,

the speed parameter is specified and the value of the mass ratio is varied.

Section 4.2 contains the results outlined. They provide the information needed to reach the

three goals set for the simply-supported system. The same basic tests outlined above, with the

same parameters, were completed for the free-free system. This compatibility facilitates the

comparison of the two separate systems.

Free-Free Beam

The discrete methodology for the free-free, one-point-of0-contact system is validated. To

accomplish this, a comparison is made between the discrete formulation presented in Section 3.2

and the continuous formulation presented in Section 3.1, for various speed parameters. Based on

the results of the simply-supported beam, only the cubic shape function is used. The speed

parameters for the free-free beam (see Eq. (4.6)) are set to closely resemble those of the

simulations performed for the simply-supported beam. Unlike the simply-supported beam,

however, all the displacements are made nondimensional by the beam's length.

Studies using the discrete formulation are also performed. First, snapshots of the beam are

displayed for different time frames, as outlined for the simply-supported beam. The fh'st set of

curves models the beam with the mass travelling along its length; the second set of curves displays

the beam in free vibration without the mass.

The next set of plots explore the results of ignoring the inertial effects of the mass. If the

inertial effects are ignored in the simply-supported beam, the mass still creates a gravitational force

on the beam. When there is no gravity, no gravitational force is applied. Therefore, the two

formulations compared in this study are:

(1) With the moving mass.

(2) Without the moving mass.

The next study examines when it becomes important to include the inertial effects of the

moving mass by varying the mass ratio for one speed parameter. Once again, the values of the

parameters used are the same as those used for the simply-supported beam.
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The final set of curves examines the multipoint-of-contact formulation. Different contact

spacing simulations were compared, again using the same speed parameters that were used for the

simply-supported beam. It is important to show that as the contact spacing approaches zero, the

simulations approach the one-point-of-contact case. It is also interesting to see how the speed

parameter alters the effects of the contact spacing.

The above-mentioned curves help to achieve the goals that the simply-supported system

could not obtain. Using the results from both the simply-supported and the free-free systems, the

best shape function is determined, the discrete methodology is completely validated, and important

parametric studies are performed.

In the following simulations, the continuous formulation that was outlined in Section 3.1 is

used for the validation of the discrete formulation. As an added assurance, an exact formulation

developed by Kurihara and Shimogo (Ref. [5]) for the simply-supported beam was compared to

the discrete simulation. The results obtained completely agreed with those obtained using the

formulation detailed in Section 3.2.

4.1.2 Parameter Discussion

Each system is described by a stiffness parameter and the mass ratio between the structure

and the moving mass. For both the simply-supported and the free-free systems, the stiffness of

the system is represented by the nondimensional parameter g, and the mass ratio is represented by

/.tm. The external load for the simply-supported system is characterized by btg. There is no

external load applied to the free-free system. Before specifying the values of these parameters, it is

important to define the speed parameter that was discussed in Section 4.1.1.

Speed Parameter

A convenient way to describe the flexible-structure/moving-mass system is to define a

speed parameter _z.

o_=Tp _ Tpvm

2tr 2L (4.1)
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whereTp is the fundamental period of the system and tr = L was previously defined as the time

required for the mass to travel the beam's length. To gain a more physical understanding of this

parameter, a relationship between the fundamental period and the natural frequency of the beam is:

Tp= 2x
o._ (4.2)

which gives

a_
/17 V m

o91 L (4.3)

where o91 is the beam's fundamental natural frequency.

Because a depends on both the speed of the moving mass and the frequency of the system,

there are two different ways to look at the meaning of o_. A low a represents either a system in

which the mass travels at a very slow speed or a very stiff system. Conversely, a high a

represents either a system where the mass travels at very high speeds or a flexible system. The

actual physics of the system are the same regardless of how the speed parameter is interpreted. In

this analysis, a is referred to as the speed parameter and consequently is used to describe the

relative speed of the moving mass.

The nondimensional natural frequencies of the simply-supported and the free-free beams

can be expressed in terms of the nondimensional stiffness parameter:

-Ols = n:2 1(_ (4.4)

O1¢= 22.4 _ (4.5)

where ,f21s and 12if represent the natural frequency of the simply-supported and the free-free

beams, respectively.

Using Eqs. (4.3) and (4.4), a unique relationship is determined between the speed and

stiffness parameters for the simply-supported and the free-free systems. The two speed

parameters, as and Off, one for each specific system, are defined as
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_ =.___.1__
_ _/-A- (4.6)

of=
22.4 _ (4.7)

Using Eqs. (4.6) and (4.7), the nondimensional stiffness parameter A, is specified to achieve

different speed parameters. Table 2 outlines the speed parameters used and the resulting value of

A. for both beam's. Either the speed parameter tx or the stiffness parameter ,71,can be used to

identify a specific case, because of the unique relationship between the two parameters.

Table 2. Stiffness and Speed Parameters Used in Simulations.

_S

0.01

0.2

0.3

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0

3.0

4.0

Simply-Supported Beam

A

1013.72

2.53

1.12

0.633

0.281

0.158

0.101

0.070

0.051

0.039

0.025

0.011

0.006

Free-Free Beam

'V
0.1

0.2

0.3

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0

3.0

4.0

A

1.967

0.492

0.219

0.123

0.055

0.031

0.019

0.014

0.010

0.007

0.005

0.002

0.001
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Remaining Parameters for the Simulations

In addition to the speed parameter a (or stiffness parameter _.), there are three other

parameters of interest to the simulation:

(1) The mass ratio, /-/m.

(2) The load parameter, /.tg.

(3) The contact point spacing, s.

The mass ratio parameter/.tin, is defined the same for both the simply-supported and the

free-free systems. The load parameter/ag, is used only for the simply-supported system, and is

not really an independent parameter, as will be seen. The contact point spacing parameter s, is

used only for the free-free system with multipoint of contact.

As defined previously,/Zm represents the ratio of the moving mass to the flexible structure.

This ratio is varied only in one set of simulations for each system (see Figures 11, 17, and 18).

The purpose of varying/z m is to determine the lowest mass ratio permissible to treat the mass as a

moving force rather than as a moving mass. The value of the mass ratios vary from 0.01 to 2.0

and are indicated in the legends of the appropriate curves. For the remaining curves, the mass ratio

is kept at a value of 0.5; therefore, the moving mass is half as massive as the flexible structure. To

model the mass as a moving force, the mass ratio is set to 0.

In Section 3.1.5, a nondimensional load parameter, #g, was developed to characterize the

load applied to the system due to the gravitational force of the moving mass. The definition of _g

is rewritten from Eq. (3.51) as,

mm g
t.lg =_

p v_ (3.51)

This load parameter in Eq. (3.30) would lead to nondimensional deflections u/L in the

beam. for the simply-supported beam, it is more convenient to express the deflections in reference

to the maximum static deflection of the beam Us. For the load mmg acting at the midspan, the

maximum static deflection occurs at the midspan and is given as

Us

_ mra g L 3

48 E1 (4.8)
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Hence, to provide the nondimensional deflections u/us rather than the u/L would requre one

to pick the new load parameter mg in Eqs. (3.30) and (3.50) as

mm_ _I
----) =pV 2

/L

=48_,

(4.9)

Using Eq. (4.9), the value of the load parameter #g is directly specified for the appropriate value of

;t or o_ specified in Table 2, or Eq. (4.6).

The final parameter to be explained is s, the contact spacing parameter:

J
100 (4.10)

where j is any integer. The parameter s represents the percentage of beam length by which the two

points are separated. For example, if s is set equal to zero, only one point of contact is achieved.

For s equal to 0.02, the two points are separated by a distance that is 2 percent of the beam length.

Four different values of s were compared for different speed parameters:

s = 0.000

s = 0.005

s = 0.010

s = 0.020

The parameters needed to describe the system have now been thoroughly explained.

However, there are two more parameters that do not define the physical property of the system but

do appear in Section 4.2. First, the simulations were run in terms of the nondimensional time

parameter t and were run up to a value of I:. = 2. As a reminder, when 'r is equal to one, the mass

has travelled over the entire beam length. Second, the parameter n defines the number of finite

beam elements used. In Figure 6, n is varied. For the remaining discrete simulations, 40 beam

elements are used. Finally, in the simulations three flexible modes were retained.
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4.2 RESULTS DISCUSSION

Section 4.2 presents the results for both the simply-supported and the free-free systems.

Each graph is discussed as it appears in the text.

The results that were outlined in Section 4.1 and their significance follow. Section 4.2

contains two subsections, Section 4.2.1 discusses the simply-supported system, and Section 4.2.2

expounds on the free-free system. The organization of each section was developed in the previous

section.

4.2.1 Results for the Simply-Supported Beam

The plots are in terms of the nondimensional deflections u/us, and the nondimensional time

parameter _:= Vmt/L.

Figure 6

Figure 6 compares the discrete formulation with both a cubic and a linear shape function

and with the continuous formulation. Each curve was simulated for a equal to 1.0.

These curves are used to determine the shape function that accurately models the

displacement with the least number of elements. Figure 6 (a) shows that for as little as 10 finite

beam elements, the cubic shape function is almost identical to the continuous formulation.

Therefore, for the rest of the discrete simulations the cubic shape function is used. It is also

important to note that for sixty finite elements, almost no difference is seen in the three curves

portrayed.

Figure 7

Figure 7 compares the discrete and continuous formulations for different speed parameters.

These curves provide two useful pieces of information: they validate the discrete methodology for

different speed parameters and they show the effect of varying the speed parameter.

For each plot in Figure 7, the discrete and continuous formulations are almost identical.

Figure 7 proves the validity of the discrete methodology for the simply-supported system. The
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plots were run up to a value of z = 2 in order to check the formulation when the mass is on the

beam, and the free vibration when the mass leaves the beam.

The speed parameters chosen to model the system range from a very slow-speed system of

0.01 to a high-speed system of 1.4. Figure 7(a), a = 0.01, represents a system where the mass is

travelling at a very slow speed. In this case, the beam sees the mass as a static force. The speed

parameter is increased until a =1.4. By scanning the deflections as the speed parameter is

increased, the effects of a on the system dynamics becomes obvious.

For values of tx less than one, the maximum effects of the moving mass occur while the

mass is still on the beam. Even for slow speeds, i.e., a = 0.2, the motion of the mass affects the

system dynamics, as indicated by the vibration that occurs even after the mass has left the beam.

The largest deflection is detected when a = 0.6 (Figure (6(d)). For higher values of a, the

damping terms due to the inertial effects decrease the midspan deflection.

For speed parameters greater than one, the maximum effects of the moving mass occur

after the mass has already left the beam.

Figure 8

Figure 8 displays the midspan deflection of the system for very large values of o_. These tx

values represent the speeds that may be seen by a high-speed ground transport vehicle. As a is

increased, the beam does not see the effect of the moving mass until values near "r. = 1.5. It is

suspected that as the speed parameter gets extremey large, the mass will have very little effect on

the beam. This trend can be seen in Figures 8(a) through 8(d), especially in Figures 8(c) and 8(d).

Figure 9

Figure 9 displays two sets of curves. Each curve represents a profile of the entire beam at

different time frames. For a speed parameter of 0.6, Figure 9(a) displays how the beam's

deflection changes as the mass travels along its length. The maximum deflection occurs near
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'r = 1. Figure 9(b) simply shows the beam in free vibration after the mass has left the beam. As

shown in Figure 8, for a = 0.6, no higher frequencies are present in the beam's vibration.

Figure 10

Figure 10 represents the first set of curves in a parametric study that examines the effects of

the mass ratio parameter. In Figure 10, the mass ratio is set equal to 0.5, four different speed

parameters are used, and two different formulations are displayed. The solid line represents the

formulation where the inertial effects of the mass are included. The dotted line shows the

deflection when the mass is treated as a moving force.

For the static case, a = 0.01 (Figure 10(a)), no difference is detected between the two

formulations. For the other speed parameters in Figures 10(b) through 10(d), however, a large

difference in the two curves can be seen. The added inertial effects increase the effective force of

the moving mass and consequently increase the maximum deflection of the midspan displacement.

Figure 11

Figure 10 examined the difference between a moving mass and a moving force formulation

for a/.tm of 0.5. For all the speeds except the static case of ct = 0.01 there is a difference in the

two formulations. In Figure 11, however, the speed parameter is kept constant, a = 0.3, but the

mass ratio/Zm, is varied.

This study determines when it is permissible to treat the travelling load as a moving force

rather than as a moving mass. For a mass ratio as small as 0.01, there is a difference between the

two curves. A significant difference, however, is not seen until the ratio reaches 0.05. The curves

diverge as t approaches 1.

In Figures 1 l(a) through 1 l(d), the mass ratio is still fairly insignificant (less than or equal

to 0.1). Because the inertial effects add damping as well as an additional stiffness' for small values

ofpm, the deflection shown by the moving mass simulation is smaller than the deflection predicted

by the moving force simulation. But, as can be seen in Figure 10(e) to 10(h), for larger values of

/.tin the deflection predicted by the the moving mass formulation is larger than the deflection

predicted by the moving force simulation.

71



(a) 3

SIMPLY-SUPPORTEDBEAM

-2

-3
0

(b)

a • .01

-- MOVING MASS

.... MOVING FORCE

! ! ! J

.5 1 1.5 2

NONDIMENSIONAL TIME

2

o

-2

-3
0

(c)

2

_-_

-2

-3

(d) 3

a=0.3

-- MOV1NGMASS

.... MOVING FORCE

_m

.5 1 1.5

NONDIMENSIONAL TIME

a•0.6 I

-- MOVING MASS I

• 17

I I I
.5 1 1.5

NONDIMENStONAL TIME

2

8 1
o

_-_

-2

a=l.0

-- MOVING MASS

.... MOVING FORCE

,till J t'f

.3 ,, I I I
0 .5 1 1,5

NONDIMENSIONAL TIME

Figure10. MMvs MF fordifferent_, p,m = 0.5.

72



(a)

z 0
0

N -.s
t

-1,5
0

(b)

I

z 0

o

z

• .1

-1,5

(C) ,5

0

-.5

Q
.'t

-1.5

(d) s

0

¢.)

z
,(

•s -I

-I ,5

= 0.01

MOVING MASS _ _

.... MOVING FORCE / _ / '

I ! !
.5 I 1.5

NONDIMEN_ONAL TIME

= 0.025

MOVING MASS _ _,

.... MOVING " ,

, I t I
.5 1 1.5

NONDIMENSIONAL TIME

14m=0.05
MOVING MASS "" _ "" •

ii I

I I |

.5 1 1.5

NONDIMENSJONAL TIME

/_m = 0,1
MOVING MASS " "_ /"

.... MOVING FORCE _

i • J

i /

7

/[

.5 1 1.5 2

NONDIMENS_ONAL TIME

SIMPLY-SUPPORTED BEAM

(e)

_ MOVING MASS

.... MOVING FORCE

-3
0

2

-2

(0 3

2

z
o

o
z

o

-2

m_

.5 1 1.5

NONDIMENSIONAL TIME

#ml= 0.S I
-- MOVING MASS

.... MOVING FORC._

-3
0 ,5 1 1.5

NOND,MENS_ONAL TIME

(g) 3

2

z
o
F- 1
o

o

Q
"5

-2

(h) 3

/

/J,m - 1.0 |

JMOVING MASS

.... MOVING FORCE

& |

NONDIMENS_ONAL TIME

8
5
=,
L_

Z

-2

/4m = 2.0

' ' i.5 1 I 5

NONDIMENSIONAL TIME

Figure 11. MM vs MF for different/_m, or=0.3.

73



For small mass ratios, the moving force assumption could be treated as a conservative

prediction. However, for an accurate solution, the inertial effects should be included in the

derivation.

4.2.2 Free-Free Beam Results

Each study that follows, except for Figure 14, contains two figures, one for each beam tip.

The two corresponding figures are discussed simultaneously. The plots are in terms of the

nondimensional displacement u/L, and the nondimensional time parameter "r = Vmt/L.

Figures 12 and 13

Figures 12 and 13 compare the discrete (cubic) formulation and the continuous formulation

for different speed parameters. In every simulation the formulations are identical. These curves

successfully validate the discrete methodology for the free-free system.

Unlike Figure 6, the smallest speed parameter, a = 0.1, displays the largest amount of

high-frequency vibration. To understand this phenomenon it is important to remember that the

free-free beam was given an initial vibration prior to the release of the moving mass. Therefore, in

reality, Figures 12(a) and 13(a) display that for the smaller speed parameters, the moving mass

does not affect the system dynamics. As the speed parameter increases, the beam's deflection is

increased but the beam's initial vibration is damped out.

Figure 14

Figure 14 is the free-free system equivalent of Figure 9. The beam's profile for different

time frames is displayed. Once again, Figure 14(a) represents the beam as the mass travels along

its length and shows how the beam is vibrating due to the initial kick it received prior to the

presence of the moving mass. The top curve, z = 1.0, shows less vibration than the other

intermediate curves. Figure 14(b) displays the free vibration of the beam after the mass has left.

Since the beam is inertially free there is an absolute vertical motion of the entire beam. Figure

14(b) also displays an oscillatory motion of the beam.
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Figures 15 and 16

Figures 15 and 16 compare the simulations with the moving mass to the simulations

without the moving mass. The comparison uses a mass ratio of/Zm = 0.5 and different speed

parameters. The simulations show a large discrepancy between the two formulations. Without the

inertial effects, the beam is unaware that a mass is travelling across its length and acts like it is in

free vibration. As a result, there is no rigid body translation or rotation.

Figures 17 and 18

Figures 17 and 18 determine when it is permissible to ignore the inertial effects that cause

the discrepancy in Figures 15 and 16. The two systems, with moving mass and without moving

mass, are compared with a constant speed parameter, a = 0.3, and varying mass ratios.

Similar to Figure 10, a small difference is detected even for a mass ratio as small as 0.01.

It is not until/.tin = 0.05, however, that the difference between the two formulations becomes

significant. It is interesting to note that the difference between the two formulations is more

dominant at the beam's left tip. The right tip deflections, predicted by the two deflections, are

similar until a mass ratio is increased to 0.1.

Based on these simulations, it is not apparent that a moving mass assumption may be

construed as a conservative approach for the free-free system. As concluded for Figure 10, to

obtain accurate results, all inertial effects of the moving mass should be included.

Figures 19 and 20

Figures 18 and 19 focus on the formulation developed in Section 3.3, Discrete Formulation

for Free-Free Beam with Multipoint of Contact. First, the curves are used to validate the

multipoint-of-contact formulation. Second, the effect of the speed parameter on the multipoint-of-

contact simulations is examined.

For each speed parameter, simulations are compared for different values of s, the contact

spacing parameter defined in Eq. (4.9). The spacing between the two points of contact decreases

as s decreases. In both Figures 19 and 20, as the value of s decreased, the curves approach the

one-point-of-contact simulation, s = 0. This trend is expected and consequently validates the
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multipoint-of-contact formulation derived in Section 3.3. As expected, for small-speed systems,

the predicted deflections increase as the separation between the two points increases.

Figures 19 and 20 display another trend: as the speed parameter is increased, the separation

between the two points of contact has little effect on the system dynamics. Also, the right tip sees

more variation than the left tip, which can be contributed to the extra time that a part of the mass is

present on the beam due to the additional point of contact. The right tip sees this effect more

significantly because the mass travels left to right across the beam.
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CHAPTER 5

CONCLUSIONS

Chapter 5 discusses the important topics and conclusions presented in this thesis. The

three different systems used to develop the methodology are examined, and conclusions reached

for each system are discussed. Also presented in Chapter 5 is an overview of the different steps

taken to develop the discrete formulation. Finally, Chapter 5 contains suggestions for future

research.

5.1 SYSTEM MODELS

The primary goal of this research was to develop a methodology that may be used for

modeling the inertially free Space Station-Mobile Transporter system using a discrete

methodology. In order to validate the discrete formulation, a continuous formulation was

developed. Three different systems were used:

(1) InertiaUy fixed system (simply-supported beam).

(2) Inertially free system (free-free beam) with one point of contact.

(3) Inertially free system (free-free beam)with multipoint of contact.

Each system was progressively more accurate in creating a model that resembles the SS-

MT system.

5.1.1 System (1): Inertially Fixed System (Simply-Supported Beam)

The inertially fixed system was modeled as a simply-supported beam and developed for

methodology verification purposes. The inertially fixed model used in this analysis is the same

model that would be used for a heavy load travelling over a bridge. Therefore, many papers are

available that provide a simulation of this simply-supported system. The results could

consequendy be verified by mere comparison with previously published results.

The simplicity of the simply-supported modes enables easy formulation of the equations of

motion. Not only are the equations easily formulated, but they can be fully expanded to display

certain properties of the system (i.e., symmetry). Also, for a specific time, the mass, stiffness,

damping, and force matrices can be determined by hand calculations, which provides a fast check

for the computer code.
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In addition to method verification, the effects of the nondimensional parameters

representing the moving mass speed and the moving mass/flexible structure mass ratio were also

examined. The dynamics of the simply-supported system can be easily interpreted by the results of

the simulation; the situation is a bit more involved for the free-free system. Thus, the simply-

supported system helped to develop a fn-m understanding of the moving mass/flexible beam system

and, once understood, the formulations can be extended for more advanced problems.

5.1.2 System (2): Inertially Free System (Free-Free Beam) with One Point

of Contact

The SS-MT system is designed to orbit around the earth. Therefore, to eventually model

that physical system, a free-free system would be needed. In this formulation a free-free beam is

used to represent an inertially free system. When the mass was attached to the beam at only one

point of contact, the method was validated by comparing continuous and discrete formulations.

Similar to the simply-supported system, the effects of the nondimensional parameters, which alter

the physical properties of the system, were examined.

The inertially free system with one point of contact successfully validates the discrete

methodology that was developed. This system was also used to develop an understanding of how

the nondimensional parameters affect the dynamics of the free-free system.

5.1.3 System (3): Inertially Free System (Free-Free Beam) with Two

Points of Contact

The iteration to the inertially free one-point-of-contact system increased the complexity of

the system but captured the train/track aspect of the SS-MT system. In the final formulation, the

mass is attached at two points to the flexible structure.

A continuous formulation was not used to validate the discrete approach for this system.

Instead, the discrete one-point-of-contact case was employed. A comparison was made between

the two-point-of-contact and the one-point-of-contact simulations for different contact point

spacing. As the spacing between the two points approached zero, the two-point-of-contact

simulation approached the one-point-of-contact simulation. Because the multipoint-of-contact case

approaches a simulation that has already been proved, this provides credence to the discrete

methodology for the multipoint-of-contact system.
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5.2 CONCLUSIONS

Using the three models described above, the discrete methodology was developed and used

to simulate the dynamics of a mass moving over a flexible inertially free and inertially fixed

system. The method was successfully validated for each system. An extensive parametric study

was then performed and provides substantial insight in understanding this class of moving-mass

problems.

Six steps were taken to develop the discrete methodology:

(1) Develop the discrete equation for the flexible structure.

(2) Develop the discrete equation for the moving mass.

(3) Using compatibility and finite-element shape functions,combine the two

discrete equations into a discrete system equation of motion.

(4) Place the system equation into a nondimensional form.

(5) Perform a modal reduction on the entire system.

(6) Place the nondimensional discrete system modal equation into a state space

formulation for easy computational evaluation.

In Chapter 3, each of these steps was discussed in great detail for the three stages of the

model. The thrust of the research focuses on performing steps (2) and (3) with great accuracy and

efficiency. The continuous formulations that were developed for method verification were derived

in an identical manner.

The analysis presented in this thesis develops a discrete methodology that will form the

basis for formulating the SS-MT simulation. The simplified system examined here, an inertially

free (or fixed) beam with a mass travelling along its length, is also solved using a continuous

formulation for methodology validation.

The method presented here is specifically designed with the SS-MT system in mind. This

analysis formulated the dynamics of the Flexible Structure/Moving Mass system into a discrete

form that is conducive to efficient computational analysis. The discrete formulation, which is in

terms of nondimensional parameters that describe the necessary physical properties of the system,

was placed in a form suitable for numerical integration. Modal reduction was used for

computational feasibility.
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5.3 SUGGESTED FUTURE RESEARCH

Using the methodology presented here, a simulation of the Space Station-Mobile

Transporter can be developed. Since the dynamics of the system may be cast in a discrete

representation that would be suitable for modal reduction, the approach can be employed in the

case of large dynamical systems: SS-MT-Space Shuttle. Because these systems will interact, the

presented approach can be used to develop a simulation for dynamic interaction studies.

For example, one possible scenario could be to examine the stability of the entire system

when the mobile transporter is travelling along the space station while the shuttle is activating its

attitude control system. The interaction between the Space Shuttle's dynamics, the attitude control

system, and the SS-MT dynamics is just an example of the potential used of the approach

developed in this thesis.
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NOMENCLATURE

NOMENCLATURE FOR CHAPTERS 1 THROUGH 5

n •

C :

Co :

Cvar :

E :

E1 :

(El)e:

F :

Fext :

Fext :

Fm :

Fm :

Ft :

Ft :

fcl :

fc2 :

fext :

f rlext "

fye :

Ii :

i :

i" :

K :

K :

K :

Ko :

Kvar :

k :

Kt :

L :

te :

Discrete second derivative operator

Damping matrix of the entire system

Constant damping matrix

Time-varying damping matrix

Identity matrix

Bending stiffness of the beam

Elemental bending stiffness

Force matrix of the entire system

Sum of all continuous forces acting on beam

Discrete external force vector

Continuous force acting on the moving mass

Discrete force acting on the moving mass

Total force acting on the beam

Total discrete force acting on the beam

Force due to first point of contact between moving mass and the beam

Force due to the second point of contact between moving mass and beam

Continuous external force applied to beam

Modal external force applied to beam

Equivalent impulse force

Nondimensional integral where i = 1, 2, 3 and 4

Location of first point of contact

Location of second point of contact

Stiffness matrix of the entire system

Beam's stiffness matrix

Nondimensional stiffness matrix of beam

Constant stiffness matrix

Time-varying stiffness matrix

Global stiffness matrix with translational and rotational degrees of freedom

Finite-element stiffness matrix with only translational degrees of freedom

Length of beam

Length of each beam element
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M ,

M •

M •

M 0 •

Mt •

Mvar "

m "

me :

mi :

mm •

N :

n :

q :

q :

qm :

qml :

qm2 :

s :

ri :

Tp :

u(x,O :

ui :

u m •

Us :

V :

vi :

V'i :

Vrl :

V1 :

v3 :

V'3 :

:

Mass matrix for the entire system

Mass matrix of the beam

Nondimensional mass matrix of the beam

Constant mass matrix

Lumped mass matrix with only translational degrees of freedom

Time-varying mass matrix

Finite-element mass matrix with translational and rotational

degrees of freedom

Mass of each beam dement

Mass contribution of each node

Mass of moving load

Number of modes used to approximate the deformation

Number of elements used to model the beam

Beam's discrete displacement field

Nondimensional discrete displacement field

Discrete mass displacement field

Discrete displacement field for first point of contact

Discrete displacement field for second point of contact

Contact point spacing in percent of beam length

Trial function for cubic shape function where i = 1, 2, 3,and 4

Fundamental period of the beam

Continuous displacement field of beam with respect to an

inertial reference frame

Finite-element trial functions i = 1, 2, 3, and 4

Displacement field of moving mass with respect to an inertial reference frame

Um= Um(Xm(t),t)

Maximium static deflection of the simply-supported beam

Generic shape function

Discretization vector i = I, 2, 3, and 4

Discretization vector for the second point of contact
Modal form of V

Linear shape function

Cubic shape function

Cubic shape function for the second point of contact

Derivative of V with respect to
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:

V m :

X :

xi :

Xm(t) :

Second derivative of V with respect to

Modal form of V_

Modal form of V_

Relative velocity of the moving mass with respect to the beam

State vector

Position of the ith beam element

Position along the beam of the moving load

Greek Letters

Of "

af :

_s :

#i :
S() :
A :

Ate :

/q, :

A :

Ar :
:

oi(t) :
 i(t) :

¢ :

_r :

_i(x) :

_)' •

_ot :

_/V :

p :

o'/ :

Speed parameter

Speed parameter for the free-free beam

Speed parameter for the simply-supported beam

Parameter used for the i th mode shape of a flee-free beam

Dirac delta function

Distance between the two points of contact

Time required for the mass totravel over one f'mite beam element

Nondimensional stiffness parameter

Diagonal matrix of eigenvalues

Reduced diagonal matrix of eigenvalues

Vector of nondimensional modal displacements

Modal displacement of the i th mode

Nondimensional modal displacement of the ith mode

Modal matrix

Reduced modal matrix

Mode shape of the i th mode

d_

dx

d 2¢

dx 2

dn_p

dx 4

Mass per unit length of the beam

Parameter used for the ith mode shape of a free free beam

Nondimensional time parameter
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-

c0i •

co/ •

Nondimensional gravitational load parameter

Nondimensional force parameter

Nondimensional discrete force parameter

Nondimensional mass parameter

Nondimensional frequency of the ith mode

Nondimensional frequency of the ith mode for the free-free beam

Nondimensional frequency of the ith mode for the simply-supported beam

Dimensional frequency of the ith mode

Natural frequency of the beam

Damping Ratio (; = .01)

NOMENCLATURE FOR APPENDICES

]c :

L :

Mt :

p(x,O:

Pm "

r(t) •

Sc •

T :

Tb :

Tm :

Vb :

Vb :

v c •

v m •

w(x,t):

Total mass moment of inertial of the system

Lagrangian
Mass of the beam and the moving mass system

Vector locating deformed position of beam with respect to the

undeformed position

Vector locating deformed position of moving mass with respect to the

undeformed position

Pm= pm(Xm(X,t),t)

Vector representing the translation of the embedded body reference frame

with respect to the inertial reference frame.

Total static imbalance of the system

Total kinetic energy

Kinetic energy of the beam

Kinetic energy of the moving mass

Potential energy of the beam

Absolute velocity of the beam

Absolute velocity of the moving mass

Relative velocity of the moving mass with respect to the embedded reference

frame

Vector representing the total displacement of the beam with respect to the

embedded reference frame
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Wm

0

: Vector representing the total displacement of the mass with respect

to the embedded reference frame

Wm = Wm(Xm(X,t),t )

: Angle representing rigid rotation between the embedded body frame

and the inertial reference frame

: Skew angular velocity of the embedded frame with respect to the inertial

reference frame

0 -0 0

 =0oo

000
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OF

APPENDIX A

LAGRANGE FORMULATION

CONTINUOUS FREE-FREE BEAM

Appendix A formulates the continuous equation of motion for the free-free beam using a

Lagrangian approach. The continuous formulation used to numerically simulate the motion of the

free-free system presented in Section 3.1 developed the equations using a Newtonian approach.

A Lagrangian formulation uses an energy approach whereas a Newtonian formulation uses

force balance. If the individual forces of the system are known, it is easy to develop the equations

using Newton's Laws of Motion. However, if the forces are difficult to identify, it is much harder

to correctly develop the equations using a Newtonian approach. A Lagrangian formulation, on the

other hand, uses the energy of the system. It is more difficult to formulate the equations but, if no

algebraic errors are made, the equations are guaranteed to be correct. For this reason, for complex

problems a Lagrangian formulation is developed to check the results obtained by the Newtonian

method.

Appendix A is organized in the same manner as the individual sections of Chapter 3. First,

the equation of motion is derived. Next, the equation is made nondimensional and placed into a

nondimensional form. This equation is then transformed from an equation in terms of the beam's

natural coordinates, to an equation in terms of the beam's modal coordinates. Finally, a state space

formulation is developed for this derivation.

A. 1 MATHEMATICAL MODEL

For this formulation a different model is used for the free-free system (See Figure A-l). A

reference frame is embedded at the beam's endpoints. With respect to this reference frame, the

beam is simply supported at both ends. The reference frame is considered to undergo rigid body

translation and rotation with respect to an inertial reference frame.

In Chapter 3, the beam was able to move in any direction with respect to the inertial

reference frame. There is no "body frame" embedded in the flexible structure. In that analysis the

two rigid body motions fall naturally from the modal analysis and are not considered separately.

That formulation is easier and more exact for numerical computations; however, the derivation

developed here provides a good check for the equations because it is more thorough and less error

prone.
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Embedded Reference

Y Frame

• b,.=
vX

Inertial Reference Frame

Figure A- 1. Model used for Lagrangian Formulation.

A.2 EQUATIONS OF MOTION

The governing equations of motion are derived using basic energy principles. The kinetic

and potential energy of the entire system is developed. These expressions are substituted into

relations developed using Hamilton's principle. The resulting equations are known as Lagrange's

equation.

To formulate the equations, the Lagrangian of the system, L, is used. The Lagrangian is

the difference between the system's kinetic and potential energies. Calculus of variations is used to

determine a function such that the integral of the Lagrangian takes on a minimum value (Ref. [19]).

The resulting formulation is known as Hamilton's principle and is represented in symbolic form as

t2
6 L dt =0

1 (h. 1)

Energy of the System

In order to obtain the system's Lagrangian, both the kinetic and potential energy of the

system must be determined. The system's kinetic energy is the sum of the beam's kinetic energy

and the moving mass' kinetic energy:
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T = Tb +Tm (A.2)

In determining the beam's kinetic energy, the flexible beam is considered to consist of an

infinite number of beam elements. The moving mass is viewed as a rigid body.

(A.3)

Tm= I mm VcT Vc (A.4)

In order to combine Eqs. (A.3) and (A.4) into a common kinetic energy expression, the

velocity of the moving mass is rewritten using the special property of the dirac delta function

shown in Eq. (3.14). The velocity of the moving mass is expressed as

vc (x.,, t) = Vb(x, t) 8(x - xm) ax

(A.5)

Note, as discussed previously, this expression's validity is due to the fact that at Xm the moving

mass is firmly attached to the beam, ensuring equivalent velocities. Using the above relation, the

total system's kinetic energy is reformulated as

+m,. - xm))dx
(A.6)

where the dependence on the independent values are omitted for brevity.

Because the beam's position vector is expressed in a reference frame that is moving with

respect to the inertial reference frame, the inertial derivative contains two variables. The first

variable reflects how the beam's position changes in time with respect to the embedded reference

frame. The second value determines how the motion of this embedded frame changes with time

with respect to the inertial frame. The expression for vb is
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Or Op
Vb= + +

(A.7)

where the two vectors r and p are defined as

r:

p:

Vector locating the origin of the embedded reference frame

with respect to the inertial reference frame, r = [rx ry rz] T

Vector locating the beam's deformed position with

respect to the undeformed position. It is expressed with

respect to the embedded reference frame, p = [x w O] T

There are two other vectors necessary to form the kinetic and potential energy expressions.

They are:

0:.

Pro:

Angle representing the rigid rotation of the embedded reference

frame about the inertial reference frame.

Vector locating the moving mass' deformed position with

respect to the undeformed position. It is expressed with

respect to the embedded reference frame. Pm= [Xm Wm O]T

Using these vectors and Eq. (A.7) the velocity expressions in the x and y directions for the

beam are:

(Vb)x = t'x" t9 W (A.8)

(vb)y =/'y + vk + 0 x (A.9)

Since the reference frame embedded in the moving mass is moving, the velocity of the

moving mass takes on a different form. It is expressed as

(Vc)x= rx- O Wm + Vm (A.10)
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_Wm b Xm

(A.11)

where Vm is the speed of the moving mass relative to the beam. Eqs. (A.10) and (A.11) represent

the moving mass velocity that would be obtained using Eq. (A.5).

Next, the system's potential energy is defined. The system being examined is in a gravity-

free environment. Thus, the only potential energy of the system is the strain energy due to the

beam's deformation:

Vb= _ax2) dx
(A. 12)

where E1 is the effective bending stiffness of the beam. Note that the beam's material properties

are assumed to be homogeneous. The potential and kinetic energy expressions are used to form

the Lagrangian, which is used in Hamilton's Principle.

Hamilton's Principle

Once the system's potential and kinetic energy are known it is trivial (but tedious) to apply

Hamilton's principle. First, the Lagrangian of the system is formed. Substituting Eqs. (A.6) and

(A. 12) into the Lagrangian expression yields Eq. (A. 13):

+ mm V_Vb _(X-Xm)- El|U w|2 |[_2,.._dx

 ax21 )
(A. 13)

Equation (A.13) is substituted into Eq. (A.1). The variation of L is taken with respect to

each of its dependent variables. In this system, L is a function of eight variables:

L = £(kx, ry, ky, O, fv, W,xx, l_m, Wm,xm,)
(A.14)
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where (') and (), represent derivatives with respect to time and spatial position, respectively. The

r and w vectors have been previously defined. The other variables are:

It is necessary to take the first variation of L with respect to each of the variables shown in

Eq. (A.14). In symbolic terms Eq. (A.1) becomes

aT aex L_ryj&y+ ,_ey+ Lb-_-j,_,
1

dr+

_T _'_'m + _T _Vm,_,,

1 (A.15)

where the actual expressions for the kinetic and potential energy, Eqs. (A.6) and (A. 12), have been

omitted for clarity. It is desirable to have Eq. (A. 15) in a form where the only variations are of the

actual variables, not their respective derivatives. This form is:

' [(...)a,x+(...)a,,+ +(...I8o]d,=o
(A. 16)

To obtain the form outlined in Eq. (A.16), each term in Eq. (A.14) is integrated by parts.

This type of integration separates two functions. One function becomes a differential and the other

is integrated upon. The form of this type of integration is:

I udv = uv-I v du
(A.17)

The function chosen to be u takes on a differential form in the new integral. The function chosen

to be dv is in its integrated form, v, for the new integral. The term in front of the new integral is

evaluated at the endpoints of the integral.

This type of integration is performed on the terms in Eq. (A.14). The variation is chosen to

be the dv function and the corresponding differential is the u function. The terms that are evaluated
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at the endpoints of the integral are the beam's boundary conditions. After the integration by parts,

the equation is in the "strong form" (Ref. [18]).

The first term ofEq. (A.15) is used as an example

- t Ot[-O--_rxJ_rxdt
(A.18)

Once the terms are in the appropriate form, the additive property of integration is used to

rewrite the integral, resulting in:

It2 ft2
()_rx + ( ) t_ry

l Jll
I tz ftz

+ + ()ew =0
] Jll (A.19)

These four integrals are separated to obtain four equations of motion.

Final Equations of Motion

For Eq. (A.19) to be true, each integral must vanish independently. To have each integral

vanish for any arbitrary time period, the actual integrands of each integral must respectively go to

zero. This leads to four equations.

The four equations are obtained by following three steps. First, the actual kinetic and

potential energies outlined in Eqs. (A.6), (A.7), (A.8), (A.9), (A.11), and (A..12) are used in Eq.

(A.14). The resulting expression is integrated (by parts) to obtain the form shown in Eq. (A.15).

The additive property of this integration is used to separate the result into the four equations of

motion, shown in Eqs. (A.20) - (A.23):

(mm + RL) r'x = 0 (A.20)
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Imm
12

mm i,_ +mm Vm "_ + 2 mm Vm _ x,,,
(A.21)

--_-+ mmXm ?y +1---j---+ mmX2m "O+ 2 mm VmXm O +

omra xm i_ + mm Xm V2 -'_ + 2 mm XmVm _ x_
(A.22)

,°

pL?y+(pL2+ mmXm) O+ 2 mmvmO +

_2w _ EI _w2 t92w +2mmVm-_'-_)(_ +p(4+ = 0mm w + mm Vm o3X-----_ x,,, 0X4 (A.23)

Equations (A.20) and (A.21) represent Newton's second law in the horizontal and vertical

direction, respectively. Equation (A.22) states that the sum of the moments around the origin of

the embedded reference frame is zero. Equation (A.23) is the partial differential equation

describing w(t), the lateral vibration of the beam. These equations could have been written

directly using Newton's Law of motion (see Section 3.1); however, it is important to account for

all of the forces. The energy approach might be more time-consuming than if Newton's Law were

immediately applied, but if done carefully it assures that all forces acting on the system have been

represented correctly.

Equations (A.21) through (A.23) are next placed into the beam's modal coordinates. In

this form it will be easier to compare the terms obtained in this derivation and the ones obtained

during Section 3.1. Section 3.1 was derived for any boundary condition. This analysis is specific

to the free-free beam.

Modal Solution

The beam's total deflection must be determined. The total deflection is the vector sum of

the rigid body motions and the flexible motions of the beam. The horizontal motion of the system,
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Eq. (A.20), is decoupled from the other three motions, thereby not playing a role in the total

deflection. The other three equations are completely coupled.

A linear superposition of modes is used to solve the three coupled equations, Eqs. (A.21),

(A.22), and (A.23). As in Chapter 3, Galerkin's method is used to reduce the error of the

approximation. However, unlike the lone partial differential equation shown in Eq. (3.10), there

are two ordinary differential equations and one partial differential equation. A modal substitution

for the beam's vibration is used in all three equations, but Galerkin's method is only applied to the

partial differential equation.

The substitution shown in Eq. (3.11) is used for the beam's lateral vibration, w(x,t). The

modes chosen must reflect the beam's lateral vibration only and not the total displacement as was

modeled in Chapter 3. After the modes are chosen, the three equations are transformed into modal

coordinates and Galerkin's method is used where applicable.

Modes Used

The modes used are those of a simply-supported beam. This may seem incorrect since the

beam itself is considered to be inertially free. However, this derivation was formulated so that the

beam is simply supported with respect to the embedded reference frame and the embedded frame

undergoes the rigid body motion with respect to the inertial frame. Therefore, the choice of

simply-supported modes for the vibration of the beam is justified. The modes for the simply-

supported beam are shown again for convenience.

¢i (x) = sin
L (A.24)

These modes are nondimensional and orthogonal; however, it is noted once again that they

are not orthonormal. Using these modes, Eqs. (A.21), (A.22), and (A.23) become

(mm + pL)'ry + + mmXm O + 2 mm Vm O + p 7j _i d2c +

N

+mm Z ( Oi _i + 2 Vm _); i_i + V2m _)7 .i)@ x.'- O
i=1 (A.95)

109



T + rnm Xm ky + _---j-- + mm X2m "0+ 2 mm Vm Xm 0

Z ih x _iax
+Pi=l

+ mm

N
w *,

Z (Xm_i _i + 2XmVm_i _i+XmV 2 _)i Oi)@x,,, = 0
i=l (A.26)

I(
N N

_j E1 _, _Y1]i + p t'y + p x O + p _i _i dx
i=1 i=

1¢

+ mm*j(t'y +XmO+ 2Vmb)

+ m CJ i= ( _)i _i + 2 Vm dP;fTi+ V2 *i ?]i xm = 0

(A.27)

Equations (A.25), (A.26), and (A.27) represent the motion of the inertially free flexible

beam with a mass moving along its length. The equations are in terms of the modal coordinates

but are still in dimensional form. Therefore, the next step is to make them nondimensional.

Some nondimensional integrals are needed to place the equations into a nondimensional

form. Two of the nondimensional integrals were already defined in Eqs. (3.15) and (3.16). They

are rewritten below for convenience.

ll(id): 1 I L ¢i _Pjdx
(A.28)

(A.29)
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The two other integrals needed are actually just special cases of Eqs. (A.28) and (A.29) that

incorporate the rigid body modes. Since these motions are not accounted for in the mode shapes,

as in Chapter 3, the integrals must be defined separately. They are

(A.30)

/f14(i) = L 2 x dpi dr
(A.31)

Equation (A.30) represents the rigid body translation and Eq. (A.31) is the rigid body rotation

(i.e., Cj = 1 and _j = x, respectively). The values of the 11 and 12, for the simply-supported mode

shapes, were found in Eqs. (3.45) and (3.47). These values together with 13 and 14, given below

Ii(i,i)= 1 (A.32)

12(i,i) = (i _)4
2 (A.33)

t3 (i) - 1- cos i _r
i lr (A.34)

i _r (A.35)

For convenience the following variables are defined

Mt = pL + m,n (A.36)

Sc pL2= _ + mm Xm
2 (A.37)

Ic = PL----_3+ mrnX2m
3 (A.38)
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where Mt is the mass of the beam and the moving mass, Sc is the total static imbalance, and I c is

the entire mass moment of inertia. Using the above identifies and the four nondimensional

integrals, the three equations of motion are rewritten in a further condensed form:

N
°°

Mt Fy + Sc 0 + 2 ram Vm 0 + p L _ I3(i) Tii
i=1

N

+ mm _, (Oi _i + 2 Vm dPiili + V2m_;" rli)@x., =0
i=1 (A.39)

N

_, 14(i) _iSc Fy + Ic 0 + 2 mm Xm Vm 0 + p L 2
i 1

N

+ mmXm _ q_i _i + 2 Vm d?i {Ti + V2 d?i rli x, =0
i=1 (A.40)

°.

(pL 130") +mm O)o,,.) F, + (pL 2 140") + mm Xm _j_ J 0 +

N N

2 mm Vm gpj O + p L _l ll(ij) _j + EI _ I2(ij) rlji= -_i=l

+ mm (_j i= d_i _i + 2 Vm dpi _i + V2 d_i Tli x,. = 0 (A.41)

It is important to note that the equations, as they stand, are valid for any mode shape used.

The mode shapes should satisfy the geometric and force boundary conditions.

This analysis uses modes shapes for a simply-supported beam, i.e., sin modes. With

respect to the embedded frame, the beam is simply-supported; therefore, the modes do satisfy the

geometric boundary conditions. They do not, however, satisfy the force boundary conditions for

the actual free-floating beam. Using the simply-supported modes, there is a shear force at the ends

of the beam. For a free-floating beam there are no moments or shears at the endpoints. The

natural frequencies of the above modal system, with the rigid motions constrained, resemble the

natural frequencies of a free-free beam, but the shapes of the sine modes do not accurately model

the motion of the actual beam. It is better to use the free-free mode shapes of the beam as in

Chapter 3, which satisfy all boundary conditions at the ends.
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For these reasons, the above derivation is not used to numerically determine the beam's

total deflection due to the motion of the moving mass. Even though this derivation is not used to

compute the actual results, it is presented as a check to the derivation of Chapter 3.

A.3 NONDIMENSIONAL EQUATIONS OF MOTION

Equations (A.39), (A.40), and (A.41) are placed into a standard nondimensional form

using the procedure outlined in Chapter 3. The same nondimensional parameters that were defined

in Eqs. (3.21)-(3.24) appear. This derivation is specific to the inertially free system; therefore,

there is no external force applied to the beam. Since the mode shapes used are sine waves, the

respective derivatives are easy to evaluate and have also been included. The final three

nondimensional equations are:

N
oo o

oo oo(I + #m) r y + +Pint 0 + 2 mm O + _ I3(i ) rl i
i=l

oo o

_ sin ig_: rli + 2 ig cos i_z _i- (ig) 2 sin i_ rh
+mm i=1

=0
(A.42)

N
oo o

(2/--+ ]A mt)°rO, +{/+3 flint2) 0 + 2 _ra "f O+iX= 1 14(i)°°17i

o

+ l_m "r _., sin i_z _°i + 2 i_ cos igz rh- (i_) 2 sin im rh = 0
i=1 (A.43)

oo

(I3{]) + Urn sin j_z) °r°y + (14{]) + mrnZ sin jg_) 0

N N
o

+ 2 #m sin j_zz 0 + _, ll(ij) °rl_ + _, __, 12(ij) r11+
i=1 i=1

oo o )lz,n sin j:xz _ sin ixv _7i + 2 izc cos i_zz Oi - (ix_ sin ixz 7_i
i=1

for j=l .... N

=0
(A.44)

These three equations are the nondimensional counterparts of Eqs. (A.39), (A.40), and

(A.41) and correspond to the expanded version of Eq. (3.27) Equations (A.42) and (A.43)

correspond to the rigid body translation and rotation, respectively, and Equation (A.44)
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corresponds to the flexible modes. Equation (A.44) along with ry = O, 0 = 0 corresponds to the

simply-supported beam case developed in Chapter 3.

Though these equations will not be used for numerical analysis, they are still placed into a

state space form because it is easier to see the similarities and differences between the derivation

presented here and the one reviewed in Chapter 3.

A.4 STATE SPACE REPRESENTATION

The three equations above, Eqs. (A.42), (A.43), and (A.44), are a coupled set of N first-

order equations. The three equations are combined into one matrix equation that is dependent on

the system states. In a state-determined system, all information needed about the system is

summarized in a finite set of variables. First, the state variables are placed into a state vector.

Using this vector, a matrix representation of the system is obtained.

State Vector

The following two vectors are defined.

xl { ry 0 01 "" FIN} T= " (A.45)

° o o }Tx2 = _.y 0 _71-.. ON (A.46)

The state vector x, is a combination of xl and x2

x={ xl }
x2 (AA7)

As stated previously, this state vector contains all the relevant information about the system.

Matrix Representation

Using the state vector of Eq. (A.47), the mass, damping, and stiffness matrices are

derived. As indicated earlier, there is no external force applied to the beam; therefore, there is no
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external force matrix. The mass matrix is the only symmetric matrix. All the matrices are time
varying.

For easy comparison to the earlier analysis, each matrix is divided into four different

matrices. Three of the matrices have contributions from the rigid body modes. The fourth matrix

contains contributions from the flexible modes only. These last matrices are identical to the

matrices shown in Eqs. (3.47), (3.48), and (3.49)•

The mass matrix is:

where the three matrices are def'med as

2+Nx2+N

(A.48)

Z +l_ l

2

+Pmd

2x2

(A.49)

M2=

I3(1)

+ IAn sin

14(1)

+ _ T sin zz

I3(N) ]
+ Pm sin Nm¢ I

1,(N) I
+ I.trnN_sin NzvJ (A.50)

M4 =

11(1,1)+
_m sinz_ sinrc'¢

sym

II(N,1}+
ltm sinz_ sinNxz

II(N,N)+
lain sinNzz sinNzz

NxN

(A.51)
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Similarly, the damping and stiffness matrices are

C=[ Cl C2 ] and
C3 C4

where

K=[ K1
K3 (A.52)

C1=[ O0 2 _., _2_m ] 2x2
(A.53)

C3=

0

0

°°•

2 I_m Nzc sin NTrz ]

2 I.tm v Nz sin Nz'cJ N x 2

2 lain sin _z'c ]

J
2 l_m sin Nzcz

2xN

(A.54)

(A.55)

C4=

212mffsin_'ccosff_

+2_'x

_/_ I1 (1,1)I2 (1,1)

21ZmZCsinN_'c coszc_:

21.tmN rcsimrzcosN _z

21amN _si nN zc osN _ z

+2_x

4J_ I 1 (N,N)I2 (N,N)

where modal damping has been added to the fourth damping matrix.

VxN

(A.56)
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The stiffness matrices are

K2 = [ - I'tm (zO2sinmr

[ - ltmz (g)2sinzcz

0 0] 2x2KI= 00

aot

o°°

" I'tm(NzO2sinN_'r 1 N x 2

- #mZ (Nzr_sinNzrz J

2xN

(A.57)

(A.58)

(A.59)

K4 =

Z 12(1,N)-

_m_2sinNlg_ sinxz

°Oo

Z/2(N, 1)-

lam(N _r)2simrz sinNJrz

$12(N,N)-

Ilm(N x)2sinN_z sinNxz Nx2

(A.60)

These matrices form the mass, stiffness, and damping matrices that may be used to

simulate the motion of the moving mass system. The values of 11, 12, 13, and 14 for the simply-

supported case are given by Eqs. (A.32)-(A.35). In order to obtain the total deflection, the rigid

body motions must be added to the beam's flexible deformation. This analysis functioned well as

a check for the Newtonian method and for that reason has been included here. This formulation

was not used for any numerical evaluation.
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APPENDIX B

RUNGE KUTTA INTEGRATION SCHEME

The most important and significant problems in engineering are formulated in mathematical

terms as a function that satisfies an equation containing the derivatives of the unknown function

(Ref. [20]). Such an equation is termed an ordinary differential equation. The theory of

differential equations dates back to the seventeenth century with the beginnings of calculus (Ref.

[21]). Solutions for different types of differential equations were derived by such great

mathematicians as Newton, the Bernoulli brothers, and Euler. The French mathematicians,

Lagrange and Laplace, also made great contributions toward the solutions of ordinary differential

equations (Ref. [20]).

However, there are still a number of ordinary differential equations for which no analytical

solution has been found. Instead, numerical integration is used to solve for the function satisfying

the ordinary differential equation.

Before computers were invented, numerical integration was hand-calculated. The most

well known numerical integration scheme is Euler's method, which can be derived by forming a

Taylor Series expansion of the ordinary differential equation. For example, consider:

._ = F(x,t) (B.1)

This ordinary differential equation is the type that must be solved to simulate the motion of the

flexible-beam/moving-mass system.

A Taylor series expansion of Eq. (B. 1) leads to

xk+l = xk + Fk AT + H.O.T (B.2)

where the subscript indicates the time level:

Xk: x at time t

Xk+l: x at time t + At

Fk: Function evaluated at xk and t
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Equation (B.2) is rearranged to obtain the forward Euler method of numerical integration.

Fk =Xk+l " Xk

At (n.3)

Because only In'st-order terms are retained, this method is termed first-order accurate. The title

"Nth-order accurate" implies that the accuracy is proportional to the n th order of the time step, Atn.

Using hand calculations, Eq. (B.3) can be iterated. Because it is first-order accurate,

however, many iterations are needed to converge the method to the correct answer. Therefore,

throughout the ages, more advanced numerical integration schemes have been developed. These

new methods are more complicated and tend to have a higher order of accuracy.

It would not be practical to employ these more advanced methods by hand; but, using a

computer they can be implemented very easily. As computing power increased, more and more

numerical integration schemes were developed. Three of these methods are discussed: the step-by-

step, the predictor corrector, and the alternating direction implicit methods.

The step-by-step method examines the function at intermediate time steps. These

intermediate values are weighted and combined to obtain the appropriate answer. The accuracy of

the step-by-step method increases as the number of intermediate steps used increases. Methods of

this type are known as explicit schemes because they use the value at a previous time frame to

determine the value at the current time.

Conversely, an implicit scheme uses the value at the current time to predict the value at a

future time. The combination of an implicit and an explicit scheme is used to form a predictor-

corrector method. An implicit scheme is used to predict the future value and then an explicit

scheme is used to correct this predicted value (Ref. [22]).

The alternating-direction implicit schemes are variations on the finite-element method.

Unlike the first two methods, this scheme works best on a mesh of elements rather than on a string

of nodal points. This type of numerical integration is only practical for two-dimensional (or three)

problems. For half of the time step, a sweep is made in one direction, i.e., x; for the second half

of the time step, a sweep is made in the other direction, i.e., y (Ref. [22]).
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As well as the three categories discussed here, there are dozens of numerical integration

schemes. These three were chosen to provide an overview of the different integration methods

available. However, to simulate the motion of the flexible-beam/moving-mass system, a step-by-

step integration scheme, a Runge Kutta integration scheme, was chosen.

Four intermediate steps were used so the scheme would be fourth-order accurate. The

fourth-order Runge Kutta integration scheme for the type of ordinary differential equation shown

in Eq. (B.1) is (Ref. [19]):

x k+l = Xk + 16(bl + 2b2 + 2b3 + b4) (B .4)

where

bl = At Fk(Xk, tk) (B.5)

b2=AtFk(xk+_b, ,tk+lAt)

b4 = At (xk+ bz, tk + at}

(B.6)

(B.7)

(B.8)

This integration scheme was also used to numerically integrate the nondimensional integrals

for the free-free mode shapes. The values were then used to formulate the constant mass,

damping, and stiffness matrices, the values of which are shown in Appendix C.

For numerical stability, the time step used in the integrations was smaller than one tenth of

the shortest period for each system. If there are many modes retained, the shortest period can

become very small. For computational efficiency only the first three flexible modes were retained

for each system.
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APPENDIX C

NUMERICAL VALUES FOR THE FREE-FREE BEAM

For clarity, the spatial derivatives of the shape functions, linear and cubic, used in the

discrete formulation were kept in their symbolic form. The constant mass, damping, and stiffness

matrices were also left in an unexpanded form because the nondimensional integrals needed to

form these matrices were only obtained as numerical values as a result of a numerical integration

scheme. This appendix presents the numerical values of these matrices and develops the

appropriate derivatives of the shape functions with respect to the weighting function _.

C.I NUMERICAL VALUES OF THE CONSTANT MATRICES

The mode shapes used to model the free-free beam consisted of trigonometric and

hyperbolic trigonometric functions. Due to the complexity of these mode shapes, the values of the

nondimensional integrals needed to form the constant mass, damping, and stiffness matrices were

determined by using the Runge Kutta integration scheme outlined in Appendix B.

As a refresher, the mode shapes used to model the free-free beam are rewritten:

_1 = 1 (C.1)

= 2- 1/2 (C.2)

dPi: cos Jfli-x + cosh jfli -x- Gi (sin jfli -x+ sinh _i -x) 3<i <_N (C.3)

where, as before

X

L (C.4)

The numerical values of the parameters ]3i and Gi are shown in Table C- 1 for the first three

flexible modes (Ref. [17]).
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Table C- 1. Numerical Values of Parameters used for Free-Free Mode Shapes.

Mode Number

1

2

3

4.73000407

7.85320462

10.99560783

_t

0.98250214

1.00077731

0.9999645

The mode shapes defined by the parameters in Table C-1 were substituted into equations

defining the nondimensional integrals, Eqs. (3.15) and (3.16). The numerical integration scheme

was then used to determine the value of these integrals.

The integrals are needed to form the constant matrices that define the dynamics of the

flexible structure. The symbolic form of the matrices were given by Eqs. (3.33), (3.37), and

(3.38). They are rewritten here for convenience

[Mo]i,i = ll(i,i) (C.5)

[Co]i.i = 2 _ 4_ ll(i,i)12(i,i) (C.6)

[go]i,i =M2(i,i) (C.7)

The numerical values for the constant mass, damping, and stiffness matrices are shown for

the first five modes. These modes correspond to rigid body translation, rigid body rotation, and

the first three flexible modes, respectively. The matrices are:

fI ]1/12

[Mo] 1

1

1 (C.8)

[Co] = 2 _ f-_

0

0

22.373

120.903161.672

(C.9)
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[Ko]=Z

0

0

500.56

3804.53 14,617.63 ]

(C.IO)

The time-varying components, due to the dynamics of the moving mass, are added to these

matrices. The resulting matrices are used to simulate the motion of the entire system.

C.2 THE SPATIAL DERIVATIVES OF THE SHAPE FUNCTIONS

In the discrete formulation detailed in Section 3.2, the spatial derivatives of the shape

functions were kept in their symbolic form. In this appendix, the required derivatives are obtained.

Both shape functions, linear and cubic, are examined. The spatial derivatives are with respect to

the weighting function _, which was defined by Eq. (3.85). Both the first and second spatial

derivatives are evaluated.

Linear Shape Function

The linear shape function was defined by Eq. (3.87) and is rewritten here for convenience:

V 1 =(1- _)Vi + _ Vi+l (C.11)

where Vi and Vi+l are constant vectors that select the appropriate nodal values.

The first spatial derivative, with respect to 4, of V1 is

Vl_ = Vi+l " Vi (C.12)

Because V1 is linear with respect to the weighting function, the second spatial derivative is zero.

In the formulation, an impulse force was used to artificially add the effects of the missing

derivative. To obtain a non-zero second derivative, a cubic shape function was formed.
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Cubic Shape Function

The cubic shape function was defined in Eq. (3.92) and is rewritten here for convenience:

+(3 _2_ 2 _3) Vi+2 + (_2 + _3)1Vi+3 (C.13)

where the Vi+2 and the Vi+3 vectors are constant vectors that serve a similar purpose to Vi and

vi+l.

The first and second spatial derivatives of Eq. (C.13) are

V3_=(-6_+ 6_2) Vi+(1-4_+3_2)lvi+l

+ (6 4-6 _2)Vi+2 + (2 _ +3 _2)1Vi+ 3

V3==(-6+ 12¢)Vi+(-4 +6_)nl-Vi+l

+(6-12_)Vi+2+(2 + 6 _)lvi+3

(C. 14)

(C.15)

As shown by Eq. (C. 15), the second derivative of V3 is not only continuous but linear with respect

to_.

126



APPENDIX D

DESCRIPTION OF COMPUTER CODE

Appendix D presents a general description of the computer code written to simulate the

motion of the flexible-beam/moving-mass system. Five different systems were simulated:

continuous-fixed, continuous-free, discrete-f'med, discrete-free, and discrete-multipoint-of-contact.

Each simulation follows the same general format: the general procedure used in creating the

simulations is explained, the differences between the systems examined are discussed and as an

example, a listing of the code written to simulate the discrete free system is presented.

The code was written using PRO-MATLAB (Ref. [23]), which is a product of The

MathWorks, Inc. MATLAB is a high-performance interactive software package. It is designed for

scientific and engineering numeric computation. In MATLAB, the problem solutions are

expressed almost exactly as they are written mathematically. The simplicity of programming in

PRO-MATLAB is having a matrix defined as a basic data element that does not require

dimensioning (Ref. [23]). The simulations were performed on a UNIX-based SUN

SPARCstation 2.

The purpose of the code was to numerically integrate the dynamic equations describing the

motion of the flexible-beam/moving-mass system. The parameters needed to describe the physical

properties of the system are _,/lm, and/.tg, all of which were described in detail in Chapter 3.

The values of these parameters used in the simulations were listed in Chapter 4.

A flowchart for the program is shown in Figure D-1. The required inputs are: the initial

state vector Xo, the initial time to, the final time tf, and the nondimensional parameters. The

desired output is the time history of the beam's displacement.

The constant components of the mass, damping, stiffness, and force matrices are

determined. Because these are independent of time, they can be calculated outside of the numerical

integration loop. After these constant matrices are known, a subroutine that performs the fourth-

order Runge Kutta integration scheme is called, which, in turn, calls a dynamic subroutine to set

up the matrix equation describing the system's dynamics.

The dynamic subroutine first formulates the time-varying components of the matrices.

These components are then added to the constant matrices that were developed earlier. The total

mass, damping, stiffness, and force matrices are combined into the form shown in Eq. (3.32).
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Inputs: xo, to, tf
nondimensional

parameters

Evaluate

Time Invariant

Components of

M, C, K, andF

Call

integration
scheme

Evaluate

M, C, K, and F

Set up

State Space Formation

No

Integrate

x

xo = Initial State Vector

to = Initial time

tf = Final time

Figure D-1. Flow chart for numerical simulations.
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The output of this dynamic subroutine is the derivative of the state vector x. This vector is

sent back to the Runge Kutta integration routine for numerical integration. This process, Runge

Kutta-dynamic-Runge Kutta, is repeated until the entire time history of the state vector x is known.

Since a fourth-order Runge Kutta integration scheme is used, the dynamic subroutine is called four

times for each time step.

The state vector contains the time history of the modal displacements and velocities. The

modal displacements are transformed to the natural coordinates of the beam using Eq. (3.11). The

final result is the time history of the beam's displacement.

The procedure outlined by the flowchart shown in Figure D- 1 represents the general format

of the code. The following paragraphs discuss the variations used to formulate each system.

D.1 CONTINUOUS FORMULATIONS

The two continuous formulations differ only by the mode shapes used to describe the

beam's deformation. This difference effects the constant mass, damping, and stiffness mau'ices as

these matrices are functions of the nondimensional integrals and the nondimensional frequencies,

which themselves are a function of the mode shapes.

For the simply-supported beam, the frequencies and the nondimensional integrals are

determined analytically. In the code, they appear in their symbolic form. For the free-free beam,

the nondimensional frequencies are inputed by hand according to the values dictated in Table C-1.

The nondimenisonal integrals are evaluated using a Runge Kutta integration scheme.

Once these matrices are developed, the two continuous formulations are almost identical

and both follow the general procedure described above.

D.2 DISCRETE FORMULATIONS

The discrete formulations are a little more involved. First, the finite element mass and

stiffness matrices are determined. Using these matrices, the mode shapes and the nondimensional

frequencies of the system are determined. If the beam is free-free, the man-ices are not altered
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before the eigenvalue decomposition. For the simply-supported beam, the boundary conditions at

the endpoints must be implemented before the eigenvalue decomposition can take place.

These mode shapes and frequencies are next truncated to contain only the number of modes

used in the simulation. These truncated values are used to form the constant discrete stiffness and

damping matrices.

To formulate the time-varying components, it is necessary to develop the shaping

functions, which are evaluated at every time step. A different subroutine was written for the both

the linear and the cubic shape functions. Unlike the linear shaping function, the cubic shaping

function is also altered if there is more than one point of contact.

The shape functions are used to formulate the time-varying components of the matrices.

Once the matrices are known, the same procedure outlined above is followed.

D.3 LISTING OF CODES

A listing of the code used to solve the discrete free single point of contact system is

presented. The cubic shape function is used to model the displacements
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Function [q,t] = mload(n,m,us,ug,um)

%

% This function will simulate the motion

% of the beam due to the moving load.

%

% The inputs to the system are

% n = number of finite elements

% m = number of modes retatined

% us = nondimensional stiffness parameter

% ug = nondimensional load parameter

% um = nondimensional mass ratio

%

% It will first set up all the system

% properties.

%

% Then it will use this property to

% create all the variables that are

% not dependent on time.

%

% It will next call integrate which will

% numerically integrate the state vector

%

% In order to do this the initial state

% vector must be set up

%

% After the numerical integration of

% the state vector, the modes will be transformed

% to the physical non-dimensional deflection

% at the midspan of the beam.

%

% Set up the variables that are not dependent on time

%

% Compute the eigenvalues, discrete m and k matrices

%

[phi,w,k,mt] = pinnedf3(n);

%
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% Normalize the eigevector wrt to m

%

phin = normeig(phi,mt,n);

%

% Reduce to the number of modes retained

%

[phir,wr] = reduce3(phin,w,n,m);

%

% Caluculate constant compontents of K and C

%

[c,kr] = stiffdamp(wr,m,us);

%

% Now set up variables needed for integrate

%

% Time

%

tO = 0.0;

tf = 0.010;

delt = .001;

%

% Inital state vector

%

[lam,sig] = coef(1);

q0 = qint(lam,sig,n);

x0 = xint(phir,q0);

j=l+m;

while j < 2*m + 1

xOfj,1) = 0.0;

j=j+l;

end

%

%

% Call integrate

%

[tt,x] = integrate(t0,tf, delt,x0,n,m,um,ug,phir,c,kr);

%
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%

% Next do a transformation back to

% physical coordinates

%

% Call trans

%

X=X',

qq = trans(phir,x,m);

skip = 10;

i=l;

m=l;

In,j] = size(tO;

while i <j+l

q(:,m) = qq(:,i);

t(m) = tt(i);

i=i+skip;

m--m+l;

end
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Function [x,y,kk,mm] = pinned3f(n)

%

% This functionwill calculate

% the mass and stiffness matrices

% for the free free beam.

%

% It will also calculate the eigenvalues and eignevectors

% of the pinned - pinned

%

% The program is broken up into two parts

%

% Part one sets up the global mass matrix

% and the global stiffness matrix

%

% Part two sets up the eigenvalue problem and solves

% for the natural frequencies of the beam. The boundary

% conditions (if there are any) would also taken care of in this part.

%

% INPUTS

%

% n represents the number of elements to be used

%

% OUTPUTS

%

% y represents the matrix of eigenvvalues that represent

% the frequencies of the beam

%

% x represents the matrix of eigenvectors that will

% will be used as the shape functions during modal

% analysis

%

% But First .....

%

% Certain variables are declared

%

% LENGTH OF BEAM
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1=1.0;

%

% DENSITY OF BEAM

p=l;

%

% MODULUS OF ELASTICITY

e=l;

%

% WIDTH OF BEAM

w=l;

%

% DEPTH OF BEAM

d=l;

%

% AREA MOMENT OF INERTIA OF BEAM

im=l,

%

%

% The length of one element is

le = I/n;

%

%

% PART ONE

%

kll =[12 6*le

6*le 4"1e^2];

k12 = [-12 6*le

-6*le 2"1e^2];

k21 = [-12 -6*le

6*le 2"1e^2];

k22 = [12 -6*le

-6*le 4"1e^2];

%

mll = [156 22"1e

22"1e 4"1e^2];

m12 = [54 -13*le

135



13*le -3"1e^2];

m21 = [54 13*le

- 13*le -3"1e^2];

rn22 = [156 -22"Ie

-22"1e 4"1e^2];

%

% Assemble the global stiffness matrix and mass matrix

%

k(l:2,1:2)=kI 1;

k(2*n+ 1:2*n+2,2*n+ 1:2*n+2)=k22;

k(2*n+1:2*n+2,2*n- 1:2*n)=k21;

k(1:2,3:4)=k 12;

%

m(l:2,1:2)=ml I;

m(2*n+ 1:2*n+2,2*n+ 1:2*n+2)=m22;

m(2*n+ 1:2*n+2,2*n- 1:2*n)=m21;

m(1:2,3:4)=m12;

%

i=2;

while i <= ((2"n)/2)

k(2*i- 1:2"i,2"i-3:2"i-2)=k21;

k(2*i- 1:2"i,2"i- 1:2*i)=k 11 +k22;

k(2*i- 1:2"i,2"i+ 1:2"i+2)=k 12;

%

m(2*i- 1:2"i,2"i-3:2"i-2)=m21;

m(2*i- 1:2"i,2"i- 1:2*i)=ml 1+m22;

m(2*i- 1:2"i,2"i+ 1:2"i+2)=m 12;

i=i+l;

end

%

kk=e*im*k/le^3;

mm = (m*le)/420;

%

% PART TWO

%

%
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%

% Next do an eigenvalue decomposition

%

[xx,y] = eig(kk,mm);

y = diag(y);

%

% Next diagonalize the eigenvector matrix

%

plo = xx(:,2*n+l);

p2o = xx(:,2*n+2);

%

alpha = 1/sqrt(p lo'*mm*p lo);

pin = alpha*plo;

%

p2n = p2o - (p2o'*mm*p 1n)*p 1n;

%

x = [xx(:,l:2*n) pln p2n];
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Function phin = normeig(phi,mt,n)

%

% This function will normalize the

% eigenvector matrix so

% phi'*mt*phi = I

%

%

i=l;

while i < 2"n+3

alpha = sqrt(phi(:,i).'*mt*phi(:,i));

phin(:,i) = phi(:,i)./alpha;

i--i+l;

end
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Function [phir,yr] = reduce3(phi,y,n,m)

%

% This function will reduce the

% matrix of eigenvectors to the

% number of modes that arc

% actually wanted in the simulation

% versus the number of degrees of

% freedom in the model

%

% The inputs are

% phi = the normalized matrix of eigenvectors

% y = the eigenvalues

% n = number of elements used

% m = number of modes wanted

%

% The output is

% phir = the normalizes and reduced eigenvector matrix

% yr = the reduced eigenvalue matrix

%

diff = 2*n-m+3;

phir=phi(:,diff:2*n+2);

yr=y(diff:2*n+2);
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Function [c,kr] = stiffdamp(yr,m,us)

%

% This function will return

% the stiffness and damping

% matrices to be used in the

% state vector.

%

% Its inputs are

% yr = the reduced eigenvalue

% matrix

% rn = the number of reduced

% modes

% us = nondimensional stiffness parameter

%

j=l;

chi = 0.01;

while j < rn + 1

cO,j) = 2*chi*sqrt(yrfj)*us);

kr(j,j) = yr(j)*us;

j=j+l;

end
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Function [tout,xout] = integrate(tO,tf, delt,xO,n,m,um,ug,phir,c,kr)

%

% This function will numerically integrate

% the state vector to simulate the motion

% of the model

%

% The inputs are

% t0 = inital time

% ff = final time

% x0 = inital state vector

% delt = delta t

% All the rest are

% model parameters which have

% previosly been defined

%

%

%

%

%

The output is

tout = the column vector containing all the times used

xout = the final state vector

% First initialize and set the tolerance

%

flag=(tf-t0)/delt;

flag2 = 2*m;

xout = zeros(flag,flag2);

tout = zeros(1,flag);

%

%

xout(1,1 :flag2) = x0';

tout(l) = tO;

%

xk = x0;

t= tO;

%

tol =. le-06;

%

% Next set up the loop
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%

count=2;

%

while t < tf

xdl = eqn3(t,xk,n,m,um,ug,phir,c,kr);

bl = delt*xdl;

%

tt = t + delt*0.5;

xt = xk + 0.5*bl;

xd2 = eqn3(tt,xt,n,m,um,ug,phir,c,kr);

b2 = delt*xd2;

%

xt = xk + 0.5"b2;

xd3 = eqn3(tt,xt,n,m,um,ug,phir,c,kr);

b3 = delt*xd3;

%

tt = t + delt;

xt = xk + b3;

xd4 = eqn3(tt,xt,n,m,um,ug,phir, c,kr);

b4 = delt*xd4;

%

x = xk + (1/6)*(bl + 2"b2 + 2"b3 + b4);

%

% Set up output vectors

%

t = t+delt;

xout(count, 1 :flag2) = x';

tout(count) = t;

%

count = count +1;

%

% Get ready for next iteration

%

xk=x;

%

end
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Function xd = eqn3(t,x,n,m,um,ug,phir,c,kr)

%

% This function is called by

% integrate

%

% It sets up the state vector and its derivatives

%

% The inputs are

% t = time

% x = state vector at time t

% The rest of parameters have been defined previously.

%

% First set up the load matrices

% which are dependent on time

%

if t >=1.0

um = 0.0;

ug = 0.0;

end

%

% Callloadf3

%

[v,vd,vdd]= loadf3(t,n);

[d,e] = size(v);

if d== 1

V=V';

end

[g,h] = size(vd);

if g ==1

vd=vd';

end

%

% Call loadn3

%

[vn,vdn,vddn] = loadn3(v,vd,vdd,phir,t);

%
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%

% Next set up the mass, stiffness, damping and force matrices

%

%

%

ma = mass(m,um,vn,t);

da = damp(c,um,vn,vdn);

ka = stiff(kr, um,vn,vddn);

% fa -- force(n,ug,t,phir);

%

% Set up the state vector

%

%

% Without r and theta, Simply Supported Case

%

%

%mn = ma(3:2+m,3:2+m);

%dn = da(3:2+m,3:2+m);

%kn = ka(3:2+m,3:2+m);

%fn = fa(3:2+m,1);

%

%

%xd(3:2+m,:) = x(5+m:2*(2+m),:);

%xd(5+m:2*(2+m),:) = inv(mn)*(fn - kn*x(3:2+m,:) - dn*xd(3:2+m,:));

%

%

% With r and theta, Free-Free Case

%

xd(1 :m,:) = x(l+m:2*m,:);

%

% With Forcing term

%

%xd(l+m:2*m,:) = inv(ma)*(fa - ka*x(l:m,:) - da*xd(1 :m,:));

%

%Without Forcing term

xd(l+m:2*m,:) = inv(ma)*(- ka*x(1 :m,:) - da*xd(1 :m,:));
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Function [v,vd,vdd] = loadf3(t,n)

%

% This function will return the vectors

% v, vd, vdd, which weights the effect of the moving

% load on the neigboring nodes. It is a

% function of time since the load is moving

%

%

% The inputs are

% t is time

% n is number of elements used

% for the modeling

%

% The outputs are

% v cubic weighting function

% vd f'u'st derivative of v

% vdd second derivative of v

%

%

% Evaluate i, and alpha

% All of which are a function of

% time

%

i = fix(t'n) + 1;

alpha = (t*n - i + 1);

%

% Set up a dummy array of zeros

%

vl = zeros(1,2*n+2);

v2 -- zeros(1,2*n+2);

v3 -- zeros(1,2*n+2);

v4 -- zeros(1,2*n+2);

%

% Determine v for n less than the

% number of elements

%
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if i < n+l

vl(1,2*i-1) = 1;

v2(1,2"i) = 1;

v3(1,2"i+1)-- 1;

v4(1,2"i+2) = 1;

end

%

% Correct last value of

% v2 when appriopriate

%

ifi == n+l

vl(1,2*i-1) = 1;

v2(1,2"i) = 1;

end

%

va = (1-3*alpha^2 + 2*alphaA3)*vl + (alpha - 2*alpha^2 + alphaA3)*(1/n)*v2;

vb = (3*alpha^2 - 2*alphaA3)*v3 + (-alpha^2 + alphaA3)*(1/n)*v4;

%

v = va + vb;

%

vc = (-6*alpha + 6*alpha^2)*vl + (1-4*alpha+3*alphaA2)*(1/n)*v2;

ve = (6*alpha - 6*alphaA2)*v3 + (-2*alpha + 3*alpha^2)*(1/n)*v4;

%

vd = (vc + ve)*n;

%

vcc = (-6 + 12*alpha)*vl + (-4+6*alpha)*(1/n)*v2;

vccc = (6 - 12*alpha)*v3 + (-2 + 6*alpha)*(1/n)*v4;

%

vdd = (vcc + vccc)*(n^2);

%

V = V';

vd = vd';

vdd = vdd';
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Function [vn,vdn,vddn] = loadn(v,vd,vdd,phir,t)

%

% This function will calculate

% vn = phir'*v

% vdn = phir'*vd

% vddn = phir'*vdd

%

% phir has already been reduced to the appropriate

% amount of modes desired.

%

vn = phir'*v;

vdn = vd'*phir;

vddn = vdd'*phir;
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Function ma = mass(m,um,vn,t)

%

% This function will calculate the mass matrix

%

%

% The inputs are

%

% m = number of modes used

% um= non dimensional mass parameter

% vn = load vector

% t = non dimensional time

%

%

%

%

ma = eye(m,m) + um*vn*vn';
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Function da = damp(c,um,vn,vdn)

%

% This function will calculate the

% damping matrix

%

%

%

%

%

%

%

The inputs are

c = diagonal structual damping matrix

um= non dimensional mass parameter

vn = load vector

vdn = derivative of load vector

da = c + 2*um*vn*vdn;
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Function ka = stiff(kr,um,vn,vddn);

%

% This function will calculate the stiffess

% matrix

%

% Its inputs are

% kr = constant component of k

% um= mass ratio

% load vectors vn and vddn

%

fy = um*vn*vddn;

ka = kr + fy;
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Function x = trans(phir,xx,m)

%

% This function will transform the

% modal displacements into natural

% displacements

%

x = phir*xx(1 :m,:);
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